摘要
相关反馈技术是近年来在图像检索中较为重要的研究方法 ,从机器学习的角度 ,以支持向量机 (SVM)为分类器 ,提出了一种新的相关反馈方法。在每次反馈中对用户标记的正例和反例样本进行学习 ,建立 SVM分类器作为模型 ,并根据学习所得的模型进行检索。由于 SVM分类器在一定程度上勾勒出了相关图像在特征空间中的分布 ,因而对整个图像库进行检索时可以查找到更多的相关图像。使用由9918幅图像组成的图像库进行实验 ,结果表明 :该方法可以通过交互的反馈过程 ,有效地检索出更多的相关图像 。
Relevance feedback technique has been an important approach in image retrieval. A novel relevance feedback algorithm is presented based on Support Vector Machine learning in content based image retrieval system. During the retrieval process, users can mark positive sample images similar to the query image. Then the algorithm constructs a SVM classifier, which can be used to find more relevance images in the whole image database. Experiments were carried out on a large size database of 9918 images. It shows that more images relevant to the query can be found efficiently by the interactive learning and retrieval process. It also shows the generalization ability of SVM under the conditions of limited training samples.
出处
《清华大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2002年第1期80-83,共4页
Journal of Tsinghua University(Science and Technology)
基金
国家"九七三"资助项目 ( G19980 30 5 0 9)
国家自然科学基金资助项目 ( 6 982 30 0 1)
博士学科点专项基金( 980 0 0 335 )