期刊文献+

整数CDF(2,2)双正交小波变换结合SPIHT的无失真图像压缩 被引量:6

An Image Lossless Compression Algorithm Based on Integer CDF(2,2)Biorthogonal Wavelet Transform and SPIHT
下载PDF
导出
摘要 讨论了整数CDF(2,2)可逆双正交小波变换,该方法可以由加法和移位完成,所以运算速度快,便于硬件实现该方法与SPIHT以及熵编码相结合可以实现无失真图像压缩,与ARJ、JPEG、整数Haar变换结合DPCM中使用的无失真编码方法相比,压缩比分别平均提高了40%、30%、15%左右。 The integer CDF(2,2)Biorthogonal Wavelet Transform is discussed.This method is completed by add and shift operation,so it has fast operation rate,and easy to implement by hadware.Which combine with SPIHT and entropy coding can implement image lossless compression.Compared with Arj and lossless algorithm used in JPEG and lossless algorithm used integer Haar wavelet transform with DPCM,the new algorithm improves the compression rate by40%,30%,15%respectively.
出处 《计算机工程与应用》 CSCD 北大核心 2002年第4期60-61,65,共3页 Computer Engineering and Applications
基金 中国科学院知识创新工程青年基金资助项目(编号:Q01H01)
关键词 无失真图像压缩 CDF(2 2)可逆双正交小波变换 SPIHT 熵编码 图像编码 整数 image lossless compression,CDF(2,2)invertible biorthogonal wavelet transform,SPIHT,entropy coding
  • 相关文献

参考文献1

二级参考文献2

  • 1吴乐南,遥测遥控,1995年,11卷,7期,19页
  • 2姚庆栋,图像编码基础,1993年

共引文献5

同被引文献32

  • 1姜会亮,胡学龙,郭振民,高燕.整数(5,3)小波变换结合SPIHT的无损图像压缩[J].计算机工程与应用,2005,41(14):69-70. 被引量:6
  • 2马维祯.利用子波变换的图象压缩编码技术[J].信号处理,1995,11(3):129-138. 被引量:23
  • 3[3]Lin F Y.A new multi-resolution theory based on orthogonal spline.Applied Mathematics and Computation 2005,168:1020~10302
  • 4[7]Lin F Y.Multi-solution theory of signal processing based on finite element method.Applied Mathematics and Computation,2005,161:293~310
  • 5[8]Lin F Y.Orthogonal continuous segmentation function.Applied Mathematics and Computation,2004,154(3):599~607
  • 6胡晶华,张军波,夏军.基于MATLAB的系统分析与设计一小波分析[M].西安:西安电子科技大学出版社,1999
  • 7HwangWen-Jyi,Derin Haluk. Multiresolution multiresource progressive image transmission[J].IEEE Trans On Image Processing, 1995;4(8): 1128~1139
  • 8Cohen I Danbechies,J Feauveau.Bi-orthogonal bases of compactly supported wavelets[J].Comm Pure Appl Math, 1992;45:485~560
  • 9H Kim,C C Li. Lossless and lossy image compression using biorthogonal wavelets with multipierlss operations[J].IEEE Trans Circuit and System Ⅱ :Analog and Digital Signal Procesing, 1998 ;48 (8): 1117~1118
  • 10Michael D Adams,Faouzi Kossentini. Reversible Integer-to-Integer Wavelet Transforms for Image Compression :Performance Evaluation and Analysis[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,2000;9(6): 1010~1024.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部