期刊文献+

对数应变幂次强化本构模型研究 被引量:2

Study on logarithmic strain power hardening constitutional model
下载PDF
导出
摘要 就有限压缩变形规律 ,对阿尔曼西应变和对数应变的适用性作了比较 .以铅的实验数据为例 ,采用对数应变—真应力描述给出了幂次强化本构方程 ,并在此基础上进行了有限元计算分析 .定出最佳回归参数 :强化系数B =10 0 0 ,强化指数n =0 0 6 2 5 2 .使用该方法得到的变形量与理论值非常接近 ,且叠代收敛次数少 ,计算效率高 。 In terms of the finite compression deformation law,the adaptability of Almanssi strain and the logarithmic strain is studied.Based on the lead compression test value,the power hardening constitutional equation based on logarithmic strain true stress configuration is presented,on the basis of this,the finite element calculation is done,and the optimal parameters are given:hardening coefficient B =1000,hardening exponent n =0.06252.The deformation numerical value by this method is in accordance with the theory,the iteration convergence numbers are decreased,therefore the calculating efficiency is higher,the calculating process is suitable for the finite compression deformation of other metals.
出处 《郑州轻工业学院学报》 2002年第1期56-58,共3页 Journal of Zhengzhou Institute of Light Industry(Natural Science)
基金 河南省科技攻关项目 (99115 0 2 2 3)
关键词 有限变形 本构方程 对数应变 叠代收敛 金属材料 阿尔曼西应变 finite deformation constitutional equation logarithmic strain iteration convergence
  • 相关文献

参考文献2

二级参考文献4

共引文献3

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部