摘要
利用双曲函数方法 ,求解了 Benjamin方程的显式行波解 ,得到了若干其它方法不曾给出的新精确解。这种方法的基本原理是利用非线性波方程孤立波解的局部特点 ,将方程的孤立波解表示为双曲函数的多项式 。
The hyperbolic function method has been used to study new travelling wave solutions for Benjamin equation u tt +q(u 2) xx +γu xxxx =0 . The basic idea of this method is based on the fact that solitary wave solution of the nonlinear evolution equations are essentially of a localized property. Because the travelling wave solution can be assumed the polynomial form of the hyperbolic functions, the resultant solutions are obtained by solving a system of nonlinear algebraic equations.
出处
《云南师范大学学报(自然科学版)》
2002年第2期1-3,共3页
Journal of Yunnan Normal University:Natural Sciences Edition