摘要
在MV-代数全体赋值集Σ上建立拓扑D(称为赋值拓扑)并研究赋值拓扑的拓扑性质。证明赋值拓扑空间是紧Hausdorff拓扑。利用赋值拓扑的紧性证明Lukasiewicz命题逻辑系统和Lukasiewicz逻辑语义的紧性。
A topology D(called assignment topology)is established on the MV-algebraic total assignment set.Then the topological properties of the assignment topology are studied.It is proved that the assignment topological space is a compact Hausdorff topology.By using the compactness of assignment topology,the compactnesses of Lukasiewicz propositional logic system and Lukasiewicz logic semantic are proved.
作者
吴霞
张家录
WU Xia;ZHANG Jia-lu(School of Mathematics and Finance,XiangNan University,Chenzhou 423000,China)
出处
《模糊系统与数学》
北大核心
2018年第5期47-54,共8页
Fuzzy Systems and Mathematics
基金
湖南省自然科学基金资助项目(16JJ6138
2017JJ2241)
湖南省社会科学基金资助项目(16YBA329
13YBB205)
湖南省教育厅科学研究项目(15C12845)