摘要
本文分析了对偶犹豫模糊集相关系数原有定义的不足之处,提出了对偶犹豫模糊集相关系数的新定义,将相关系数的取值范围扩大到[-1,1],避免使用会改变原始决策信息的人造填充数据,弥补了原有相关系数公式的不足之处。同时,本文首次给出对偶犹豫模糊集相关系数的上下界公式,并引入对偶犹豫模糊集的加权相关系数的新概念。此外,本文将改进后的相关系数应用于医疗诊断与投资决策等实际问题中,以验证其正确性与有效性。
This paper analyzes the shortcomings of existing correlation coefficients of dual hesitant fuzzy set,a new definition of fuzzy set correlation coefficient is proposed and its dual hesitate range has been expanded to[-1,1].In its application,there is no need to use artificial fill data that will change the original decision information.At the same time,the upper and lower bounds for the correlation coefficient of the dual hesitant fuzzy sets are given for the first time,and the new concept of weighted correlation coefficient of the dual hesitant fuzzy sets is introduced.In addition,the improved correlation coefficients are applied to medical diagnosis and investment decision making to verify its validity and effectiveness.
作者
李欣
张小红
LI Xin;ZHANG Xiao-hong(School of Arts and Sciences,Shanghai Maritime University,Shanghai201306,China;School of Arts and Sciences,Shaanxi University of Science&Technology,Xi'an710021,China)
出处
《模糊系统与数学》
北大核心
2018年第5期121-129,共9页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(61473239
61573240)
关键词
对偶犹豫模糊集
相关系数
上下界公式
医疗诊断
投资决策
Dual Hesitation Fuzzy Set
Correlation Coefficient
Upper and Lower Bounds Formula
Medical Diagnosis
Investment Decision