摘要
针对属性值为毕达哥拉斯模糊数的多属性决策问题,考虑到属性信息分布的疏密程度,提出了毕达哥拉斯模糊数密度集结(PFDM)算子。利用得分函数,提出一种毕达哥拉斯模糊数集有效聚类的方法,进而给出PFDM算子的密度加权向量,并构建PFDM算子与经典算子的合成形式,同时分析了PFDM算子相关性质。最后,提出基于PFDM算子的多属性决策方法,并通过决策实例说明了该方法的可行性和有效性。
Considering the density degree of the attribute information distribution,the density operators of the Pythagorean fuzzy numbers(PFDM)are proposed to solve the multi-attribute decision making problem with the Pythagorean fuzzy numbers.An effective method of the Pythagorean fuzzy numbers clustering is given by using the scoring function.Then the density weighted vector of the PFDM operator is given,and the combination forms of the density operator and the classic operators are also given.The properties of the PFDM operator are analyzed.Finally,a decision method based on the PFDM operator is proposed,and an example is given to illustrate the feasibility and effectiveness of this method.
作者
常娟
杜迎雪
刘卫锋
CHANG Juan;DU Ying-xue;LIU Wei-feng(School of Science,Zhengzhou University of Aeronautics,Zhengzhou450015,China)
出处
《模糊系统与数学》
北大核心
2018年第5期166-173,共8页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11501525)
郑州航空工业管理学院青年科研基金资助项目(2016113003
2017113003)
关键词
毕达哥拉斯模糊数
聚类
密度算子
决策
Pythagorean Fuzzy Numbers
Clustering
Density Operator
Decision Making