期刊文献+

基于密度权值平均变化率的CFSFDP聚类算法

The Based on Average Change Rate of Density Weight of CFSFDP Clustering
下载PDF
导出
摘要 CFSFDP聚类算法适应于任意形状的类簇,不需要提前设定聚类数,通过对局部密度和距离的计算产生决策图,从而人工选择聚类中心.若聚类中心在决策图中基本重叠时,肉眼无法分辨,造成对聚类中心的漏选.文章采取基于密度权值平均变化率的CFSFDP聚类算法,增加数据点之间的差异性,以偏离的变化趋势求拐点,通过计算得到聚类中心,提高聚类的准确性. CFSFDP clustering algorithm adapts to any shape of clusters,does not need to set the number of clusters in advance,through the calculation of local density and distance to generate decision maps,so as to select the cluster center manually.If the clustering centers overlap in decision maps,they can not be distinguished by naked eyes,resulting in the omission of clustering centers.In this paper,CFSFDP clustering algorithm based on the average change rate of density weight is adopted to increase the difference between data points,and the inflection point is calculated by the trend of deviation.The clustering center is calculated to improve the stability of clustering.
作者 董炎焱 DONG Yanyan(Department of Mathematical Sciences,Jinzhong Teachers College,Jinzhong 030600,China)
出处 《太原师范学院学报(自然科学版)》 2018年第3期33-36,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 基于职教云平台的混合式学习实践研究(GH-171547)
关键词 CFSFDP算法 密度权值 决策图 平均变化率 CFS FDP algorithm density weight decision diagram average change rate
  • 相关文献

参考文献3

二级参考文献34

  • 1彭京,唐常杰,李川,陈安龙,胡建军.一种基于UD-Tree的分布式数据库新型复制架构[J].小型微型计算机系统,2004,25(12):2065-2069. 被引量:5
  • 2彭京,唐常杰,胡建军,陈安龙,李川.DIRM:基于动态信息路由的数据检索模型[J].四川大学学报(工程科学版),2005,37(1):108-115. 被引量:9
  • 3Kaufan L, Rousseeuw P J. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 4Han J W, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001 : 145-176.
  • 5Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large datahases//Haas L M, Tiwary A eds, Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998: 73-84.
  • 6Zhang Tian, Ramakrishnan Raghu, Livny Miron. BIRCH: An efficient data clustering method for very large database. Department of Computer Science, University of WisconsinMadison: Technical Report, 1995.
  • 7Zhang T, Ramakrishnan R, Livny M. BIRCH: An efficient data clustering method for very large databases//Jagadish H V, Mumick I S eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996:103-114.
  • 8Ester M, Kriegel H P, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise//Simoudis E, Han J W, Fayyad U M eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231.
  • 9Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatie subspaee clustering of high dimensional data for data mining applieation//Haas L M, Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998:94-105.
  • 10Guha Sudipto, Rastogi Rajeev, Shim Kyuseok. ROCK: A robust clustering algorithm for categorical attributes. Information System, 2000, 25(5): 345-366.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部