期刊文献+

综合纹理和亮度的夜间场景图像来源检测方法 被引量:2

Image source detection for night scene based on texture and brightness
原文传递
导出
摘要 针对目前基于模式噪声方法处理夜间场景下图像来源检测准确效果较差问题,提出一种综合纹理和亮度的夜间场景图像来源检测方法。首先基于夜间场景图片会存在同张图片不同区域会有不同纹理和亮度从而会影响提取模式噪声质量不同这一理论依据,将图片根据纹理和亮度分成若干大小相等的块;然后对不同块按纹理平缓亮度良好、纹理复杂亮度差、纹理平缓亮度差、温度复杂亮度良好四种情况处理,其中对于纹理复杂的区域提取的噪声要抑制纹理干扰、对于亮度条件差的区域提取的模式噪声需要增强、对于亮度差且纹理又复杂的区域提取的模式噪声、既要抑制纹理的干扰又要增强模式噪声。实验结果表明,本文方法在夜间场景情况对图像检测整体识别率均在在80%以上,与传统模式噪声提取算法相比,该算法正确率能够提高4到12个百分点。 As the method based on pattern noise cannot deal with the image source detection in night effectively,this paper proposes a method of detecting the source of night scene images with comprehensive texture and brightness.First,based on the nocturnal scene,there will be different textures and lumi- nances in different regions of the same picture,which will affect the difference of the quality of the extraction pattern.The images are divided into pieces with equal size according to the texture and brightness.Four cases are treated respectively,in which the noise extracted from complex texture regions should be suppressed by texture interference,the mode noise extracted from regions with poor luminance conditions needs to be enhanced,for the mode noise extracted from regions with low brightness and complex texture,the interference of texture should be suppressed,while the mode noise should be enhanced at the same time.The experimental results show that the overall recognition rate of this method is above 80%in the night scene.Compared with the traditional mode noise extraction algorithm,the accuracy of the algorithm can be enhanced by 4%--12%.
作者 王瑞昆 柯永振 陈凌翔 WANG Rui-kun;KE Yong-zhen;CHEN Ling-xiang(School of Computer Science and Software Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2018年第12期1358-1364,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61602344)资助项目
关键词 图片来源检测 夜间场景 模式噪声 纹理 亮度 image source detection night scene pattern noise texture brightness
  • 相关文献

参考文献2

二级参考文献23

  • 1KHARRAZI M, SENCAR H T, MEMON N. Blind source camera i- dentification[ C]//Proceedings of IEEE International Conference on Image Processing. Piseataway: IEEE Press, 2004:709-712.
  • 2SWAMINATHAN A, WU M, LIU K J R. Nonintrusive component forensics of visual sensors using output images[ J]. IEEE Transac- tions on Information Forensics and Security, 2007, 2(1) : 91 - 106.
  • 3CHOI K S, LAM E Y, WONG K K Y. Automatic source camera i- dentification using the intrinsic lens radial distortion[ J]. Optics Ex- press, 2006, 14(24) : 1551 - 1565.
  • 4JOHNSON M K, FARID H. Exposing digital forgeries through chro- matic aberration[ C}//Proceedings of the 8th Workshop on Multime- dia and Security. Piscataway: IEEE Press, 2006:48 -55.
  • 5LUKAS J, FRIDRICH J, GOLJAN M. Digital camera identification from sensor pattem noise[ J]. IEEE Transactions on Information Fo- rensics and Security, 2006, 1(2) : 205 -214.
  • 6FRIDRICH J. Digital image forensics[ J]. IEEE Signal Processing Magazine, 2009, 26(2) : 26 -37.
  • 7LI C T, LI Y. Digital camera identification using colour-decoupled photo response non-uniformity noise pattern[ C]// Proceedings of IEEE International Symposium on Circuits and Systems. Piscataway: IEEE Press, 2010:3052 - 3055.
  • 8YOICHI T, HITOSHI K. Digital camera identification based on the clustered pattern noise of image sensors[ C]// Proceedings of IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2011:1-4.
  • 9LI C T. Source camera identification using enhanced sensor pattern noise[ C]// Proceedings of IEEE International Conference on Image Processinz. Piscatawav: IEEE Press, 2009:1509 - 1512.
  • 10JUN T, YASUYUKI M, TSUKASA O, et al. Estimating demosaic- ing aigorithms using image noise variance[ C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010:279 -286.

共引文献4

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部