期刊文献+

Bivariate Constant-Stress Accelerated Degradation Model and Inference Based on the Inverse Gaussian Process

Bivariate Constant-Stress Accelerated Degradation Model and Inference Based on the Inverse Gaussian Process
原文传递
导出
摘要 Modern highly reliable products may have two or more quality characteristics(QCs) because of their complex structures and abundant functions. Relations between the QCs should be considered when assessing the reliability of these products. This paper conducts a Bayesian analysis for a bivariate constant-stress accelerated degradation model based on the inverse Gaussian(IG) process. We assume that the product considered has two QCs and each of the QCs is governed by an IG process. The relationship between the QCs is described by a Frank copula function. We also assume that the stress on the products affects not only the parameters of the IG processes, but also the parameter of the Frank copula function. The Bayesian MCMC method is developed to calculate the maximum likelihood estimators(MLE) of the model parameters. The reliability function and the mean-time-to-failure(MTTF) are estimated through the calculation of the posterior samples. Finally, a simulation example is presented to illustrate the proposed bivariate constant-stress accelerated degradation model. Modern highly reliable products may have two or more quality characteristics(QCs) because of their complex structures and abundant functions. Relations between the QCs should be considered when assessing the reliability of these products. This paper conducts a Bayesian analysis for a bivariate constant-stress accelerated degradation model based on the inverse Gaussian(IG) process. We assume that the product considered has two QCs and each of the QCs is governed by an IG process. The relationship between the QCs is described by a Frank copula function. We also assume that the stress on the products affects not only the parameters of the IG processes, but also the parameter of the Frank copula function. The Bayesian MCMC method is developed to calculate the maximum likelihood estimators(MLE) of the model parameters. The reliability function and the mean-time-to-failure(MTTF) are estimated through the calculation of the posterior samples. Finally, a simulation example is presented to illustrate the proposed bivariate constant-stress accelerated degradation model.
作者 DUAN Fengjun WANG Guanjun 段凤君;王冠军(School of Economics, Nanjing University of Finance and Economics;School of Mathematics, Southeast University)
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第6期784-790,共7页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.11671080) the Jiangsu Provincial Key Laboratory of Networked Collective Intelligence(No.BM2017002)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部