期刊文献+

抽样子空间约束改进大数据谱聚类算法

Improved large data spectral clustering algorithm based on sampling subspace constraint
下载PDF
导出
摘要 在分析经典谱聚目标函数与加权核k-means目标函数等价基础上,设计了一种基于抽样子空间约束的改进大规模数据谱聚类算法,算法通过加权核k-means迭代优化避免矩阵特征分解的大量资源被占用,通过数据抽样及聚类中心的子空间约束,避免全部核矩阵都被使用,从而降低经典算法的时间空间复杂度。理论分析和实验结果表明,改进算法保持与经典算法相近聚类精度,提高了聚类效率,验证了改进算法的有效性。 On the basis of analyzing the equivalent function of the objective function of classical spectral clustering algorithm and the weighted kernel k-means objective function,an improved large-scale data spectrum clustring algorithm based on sampling subspace constraint was designed,the weighted kernel k-means iterative optimization was used to avoid the large resource consumption of Laplacian matrix feature decomposition,and by using data sampling and constraining the cluster center to the subspace generated by the sampling points,the use of all kernel matrices was avoided,thereby reducing the time-space complexity of classical algorithms.Theoretical analysis and experi- mental results show that the improved algorithm can greatly improve the clustering efficiency on the basis of main- taining similar clustering accuracy with the classic algorithm and verify the effectiveness of the proposed algorithm.
作者 聂茹 NIE Ru(Electronic Information Engineering Institute,Guangzhou College of South China University of Technology,Guangzhou 510800,China)
出处 《电信科学》 2018年第11期41-47,共7页 Telecommunications Science
基金 广东省教育厅青年创新人才基金资助项目(No.2016KQNCX227)~~
关键词 大规模数据谱聚类 加权核k-means算法 数据抽样 矩阵特征分解 核矩阵 large scale data spectral clustering weighted kernel k-means algorithm data sampling matrix feature decomposition kernel matrix
  • 相关文献

参考文献7

二级参考文献48

  • 1刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 2TIAN Zheng,LI XiaoBin,JU YanWei.Spectral clustering based on matrix perturbation theory[J].Science in China(Series F),2007,50(1):63-81. 被引量:19
  • 3D J Higham.M Kibble.A Unified View of Spectral Clustering[M].England:Department of Mathematics,University of Strathclyde,2004.
  • 4J Shi,J Malik.Normalized cuts and image segmentation[A].Proc IEEE Conf Computer Vision and Pattern Recognition[C].Washington:IEEE Computer Society,1997.731-737.
  • 5J Shi,J Malik.Normalized cuts and image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 6C Lee,O Zaiane,H Park,J Huang,R Greiner.Clustering high dimensional data:A graph-based relaxed optimization approach[J].Information Sciences,2008,178(23):4501-4511.
  • 7M Meila,L Xu.Multiway Cuts and Spectral Clustering[M].Washington:Department of Statistics,University of Washington,2004.
  • 8U Von Luxburg.A tutorial on spectral clustering[J].Statistics and Computing,2007,17(4):395-416.
  • 9I Tsang,J Kwok,J Zurada.Generalized core vector machines[J].IEEE Transactions on Neural Networks,2006,17(5):1126-1139.
  • 10I Tsang,J Kwok,P Cheung.Core vector machines:Fast SVM training on very large data sets[J].Journal of Machine Learning Research,2005,6:363-392.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部