期刊文献+

非平稳部分可观测状态下的破碎机辊套剩余寿命预测预测新方法 被引量:1

A NEW PREDICTION METHOD FOR RUL PREDICTION OF CRUSHER ROLL IN NON STATIONARY PARTIALLY OBSERVED STATE
下载PDF
导出
摘要 双齿辊破碎机辊套准确的剩余寿命预测结果是维护人员做出科学维修决策的重要依据。工程实践中往往是部分状态信息是可观测的,为解决在非线性、非平稳部分可观测状态下破碎机辊套RUL难以准确预测的难题,提出了一种小波技术与SVR融合的RUL预测新方法。首先采用相关分析进行辊套振动信号特征值的提取,其次利用小波技术对收集到的振动信号消噪,然后建立辊套剩余寿命与特征值之间的关系,来描述辊套的非线性动态变化。最后通过SVR模型对破碎机辊套进行剩余寿命预测。预测结果表明:该方法能够有效解决部分可观测状态情形下的剩余寿命预测,从而降低维修成本,具有较强的工程适用性与推广价值。 Accurate prediction of the remaining useful life (RUL)of the roller with double toothed roll crusher is an important basis for maintenance personnel to make seientifie maintenance deeision.In engineering practice,some state information is often observed.In order to solve the problem of the remaining useful life of the roller sleeve is difficult to predict accurately in the non-linear and non-stationary state,a new method of remaining useful life prediction based on wavelet transform and SVR fusion is proposed.Firstly,the correlation analysis is used to select the characteristic value of the vibration signal of the roller.Seeondly,wavelet technology is used to eliminate the noise of the collected vibration signals.Then,the relationship between the residual life and the charaeteristie value is established,and the nonlinear dynamic ehange of the roll sleeve is deseribed.Finally through the SVR model to predict the remaining useful life of the crusher roller.Prediction results show that the method can effectively solve the remaining useful life prediction of partially observable state,thereby reducing the maintenance cost,and has strong engineering applicability and popularization value.
作者 伍建军 刘海平 叶祥 WU JianJun;LIU HaiPing;YE Xiang(College of Mechanism and Electronic Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《机械强度》 CAS CSCD 北大核心 2018年第6期1278-1286,共9页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51365015 51665017) 江西省科技厅科技项目(20142BBE50058 20161BBE80041)资助~~
关键词 部分可观测状态 相关分析 小波分析 剩余寿命预测 支持向量回归机 Partially observable state Correlation analysis Wavelet analysis RUL Prediction Support vector regression
  • 相关文献

参考文献6

二级参考文献35

共引文献191

同被引文献6

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部