期刊文献+

NEQR量子图像下的差分扩展可逆数据隐藏算法 被引量:1

Reversible data hiding algorithm in NEQR quantum images
下载PDF
导出
摘要 量子图像安全处理是一个新兴的研究领域,而量子图像数据隐藏是量子图像安全处理技术的一种,在不损害载体的情况下可用于保护量子图像的版权和认证量子图像是否完整。目前尚缺乏对量子图像可逆数据隐藏的详细技术研究。结合差值扩展技术,本文提出了一种量子图像可逆数据隐藏算法:1)选用NEQR量子图像表示法来表示图像;2)借鉴经典的差值扩展算法,在NEQR量子图像上对量子比特进行处理,可逆嵌入数据; 3)设计了信息嵌入、信息提取和载体无损恢复的量子线路图,并进行了仿真。基于经典图像的实验结果表明,本文算法是可逆的,可用于将来对量子图像的认证和保护。 Quantum image secure processing is a new research field and reversible data hiding in quantum image is an import issue in quantum image secure processing technologies, which can be used to protect copyright and integrity of quantum images. In literature, there is lack of reversible data hiding for quantum images. In this paper we propose a reversible data hiding algorithm by difference expansion. Firstly, NEQR is applied to store cover quantum image. Furthermore, the information is reversibly embedded into the cover quantum image by using classical deference expansion strategy. Quantum circuits of information embedding, information extraction and original quantum image’s restoration are given in details. Simulation testing in classical way has shown that the proposed method is reversible, and can be used as a potential solution for protection of quantum images.
作者 项世军 李豪 宋婷婷 XIANG Shijun;LI Hao;SONG Tingting(School of Information Science and Technology/School of Cyber Security,Jinan University,Guangzhou 510632,China;State Key Laboratory of Information Security ,Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China)
出处 《信息安全学报》 CSCD 2018年第6期78-91,共14页 Journal of Cyber Security
基金 国家自然科学基金(No.61272414 No.61772234) 信息安全国家重点实验室开放课题基金(No.2016-MS-07)资助
关键词 量子图像 NEQR 差值扩展 可逆 数据隐藏 quantum image NEQR difference expansion reversibility data hiding
  • 相关文献

参考文献2

二级参考文献16

  • 1Nielsen M A,Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge, Cambridge University Press, 2000.
  • 2Landauer R. Irreversibility and heat generation of the computinI process [J]. IBM Journal of Research and Development, 1961 ,1 (3):183-191.
  • 3Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society, 1985,400(1818) :97 -101.
  • 4Vedral V, Barenco A, Ekert A. Quantum networks for elementar1 arithmetic operations[J]. Physical Review A, 1996,54(1): 147 -153.
  • 5Bomble L, Lauvergnat D,Remacle A,et al. Controlled full adder or subtractor by vibrational quantmn computing [J]. Physical Review A,2009,80(2) :022332/ 1-8.
  • 6Grover L K. Quantum mechanics helps in searching for a needle in a haystack[J].Physical Review Letters, 1997,79(2) :325-328.
  • 7Cheng S T,Wang C Y. Quantum switching and quantum mergesorting [J]. IEEE Transactions on Circuits and Systems, 2006, 53(2) : 316-325.
  • 8Oliveira D S, Sousa P B, Ramos R V. Quantum search algorithm using quantum bit string comparator [C]//Proceedings of 2006 International Telecommunications Symposium. 2006:582-585.
  • 9Oliveira D S, Ramos R V. Quantum bit string comparator: cir- cuits and applications [J]. Quantum Computers and Computing, 2007,7(1) : 17-26.
  • 10Nascimento A L, Kowada L A B, Oliveira W R. A reversible ULA [C]//WECIQ: First Workshop-school in Quantum Infor- mation and Computation. Brazil, 2006.

共引文献12

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部