期刊文献+

Nekrasov矩阵的逆矩阵无穷范数的新上界

New upper bounds of the infinity norm for the inverse matrix of Nekrasov matrix
下载PDF
导出
摘要 Nekrasov矩阵是H矩阵的新子类,研究它的逆矩阵无穷范数的界.利用Nekrasov矩阵定义式的特点,通过引入恰当的参数,构造了严格对角占优矩阵和M矩阵;借助构造的这些矩阵与Nekrasov矩阵的比较矩阵的关系,结合不等式的放缩技巧,得到了Nekrasov矩阵的逆矩阵无穷范数带有可调节参数的两个新界.数值算例说明,新的估计式一定程度上提高了现有的结果 . Nekrasov matrix is a new subclass of Hmatrices.This paper studies the bounds on the infinite norm of the inverse matrix.The features of the definition of Nekrasov matrix are used and the appropriate parameters are introduced,in order to construct strict diagonally dominant matrix and M-matrix.The relations between these matrix and comparision matrix of Nekrasov matrix are used,as well as the narrowing technique of inequality,and two new territories with adjustable parameters are obtained for the infinite norm of the inverse matrix of the Nekrasov matrix.Numerical examples show that some of the existing results in the new territories are raised under certain circumstances.
作者 蒋建新 JIANG Jian-xin(School of Mathematics,Wenshan University,Wenshan 663009,P.R.C.)
出处 《西南民族大学学报(自然科学版)》 CAS 2018年第6期640-644,共5页 Journal of Southwest Minzu University(Natural Science Edition)
基金 云南省教育厅科学研究项目(2018JS491)
关键词 NEKRASOV矩阵 无穷范数 上界 Nekrasov matrix infinity norm upper bound
  • 相关文献

参考文献8

二级参考文献30

  • 1王强 ,宋永忠 ,李维国 .一类迭代矩阵的谱半径的上界估计[J].南京大学学报(数学半年刊),2005,22(1):96-106. 被引量:23
  • 2Bailey D W, Crabtree D E. Bounds for determinants[J]. Linear Algebra App, 1969(2) : 303 -309.
  • 3Li W. On Nekrasov matrices[J]. Linear Algebra Appl, 1998, 281:87 -96.
  • 4Szulc T. Some remarks on a theorem of Gudkov[J]. Linear Algebra Appl, 1995, 225:221 -235.
  • 5Szulc T. Some Remarks on a Theorem of Gudkov[J]. Linear Algebra Appl., 1995, 225:221-235.
  • 6Li Wen. On Nekrasov matrices[J]. Linear Algebra Appl., 1998, 281:87-96.
  • 7Varga R S. Matrix iterative analysis[M]. Berlin: Springer, 2000.
  • 8Yang Z S, Zheng B, Liu X L. A new upper bound for IIA-111~ of a strictly a-Diagonally dominant M-Matrix [J]. Advances in Numerical Analysis, 2013, 2013: 1-6.
  • 9Xu S F. Theory and Methods about Matrix Computation [M]. Beijing: Tsinghua University Press, 1986.
  • 10Li W.On Nekrasov matrices[J].Linear Algerbr Appl,1998,281:87-96.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部