期刊文献+

带未知衰减观测率多传感器系统的自校正加权观测融合估计 被引量:7

Self-Tuning Weighted Measurement Fusion Estimation for Multi-Sensor Systems with Unknown Fading Measurement Rates
原文传递
导出
摘要 对带未知衰减观测率的多传感器线性离散时不变系统,通过相关函数在线辨识不同传感器的衰减观测期望和方差,将在线辨识的参数代入到最优加权观测融合滤波算法中得到自校正加权观测融合滤波算法.分析了参数辨识的一致性和自校正加权观测融合滤波算法的收敛性.仿真例子验证了算法的有效性. For a multi-sensor linear discrete time-invariant system with unknown fading measurement rates,the expectations and variances of fading measurements from different sensors are identified online by correlation functions.The online identi- fied parameters are substituted into the optimal weighted measurement fusion filtering algorithm to obtain the self-tuning weighted measurement fusion filtering algorithm. The consistence of identified parameters and the convergence of self-tuning weighted measurement fusion filtering algorithm are analyzed.A simulation example verifies the effectiveness of the proposed algorithms.
作者 史腾飞 孙书利 SHI Tengfei;SUN Shuli(School of Electronics Engineering,Heilongjiang University,Harbin 150080)
出处 《系统科学与数学》 CSCD 北大核心 2018年第10期1110-1116,共7页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61573132)资助课题
关键词 多传感器系统 衰减观测 相关函数 加权观测融合 自校正融合估计 Multi-sensor system fading measurement correlation function weighted measurement fusion self-tuning fusion estimation
  • 相关文献

参考文献4

二级参考文献27

  • 1DENG Zi-Li LI Chun-Bo.Self-tuning Information Fusion Kalman Predictor Weighted by Diagonal Matrices and Its Convergence Analysis[J].自动化学报,2007,33(2):156-163. 被引量:14
  • 2WU Jingjing, HU Shiqiang, WANG Yang. Adaptive multifeature visual tracking in a probability hypothe- sis density filtering framework [J]. Signal Processing, 2013, 93(11): 2915-2926.
  • 3VASIC M, MARTINOLI A. A collaborative sensor fusion algorithm for multi-object tracking using a Gaussian mixture probability hypothesis density filter [C]//Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas: IEEE, 2015: 491-498.
  • 4PETETIN Y, MORELANDE M, Desbouvries F. Marginalized particle PHD filters for multiple object Bayesian filtering [J]. IEEE Transactions on Aero- space Electron System, 2014, 50(2) : 1182-1196.
  • 5VO B N, MAW K. The Gaussian mixture probabili- ty hypothesis density filter [J]. IEEE Transactions on Signal Process, 2006, 54(11): 4091-4104.
  • 6SMITH G L. Sequential estimation of observation er- ror variance in a trajectory estimation problem [J]. AIAA Journal, 1964, 5(11): 1964-1970.
  • 7SAGE A P, HUSA G W. Adaptive filtering with un- known prior statistics [C]// Proceedings of Joint Au- tomatic Control Conference. Boulder Colorado: IEEE, 1969 : 760-769.
  • 8NARASIMHAPPA M, RANGABABU P, SABAT S L, et al. A modified Sage-Husa adaptive Kalman fil- ter for denoising Fiber Optic Gyroscope signal [C]//// Proceedings of IEEE INDICON. Kochi: IEEE, 2012 : 1266-1271.
  • 9GAO Wei, LI Jingchun, ZHOU Guangtao, etal. A- daptive Kalman filtering with recursive noise estima- tor for integrated SINS/DVL systems [J]. Journal of Navigation, 2015, 68(1) : 142-161.
  • 10ZHANG Guanghua, LIAN Feng, HAN Chongzhao, et al. An improved PHD filter based on variational Bayesian method for multi-target tracking [C]// Pro- ceedings of the 17th International Conference on Infor- mation Fusion. Salamanca: IEEE, 2014: 1-6.

共引文献23

同被引文献34

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部