摘要
In order to fabricate a novel ZnO/cotton composite, a high proportion of ZnO nanoparticles were assembled in cotton fibers, and the as-obtained cotton fabric can possess better UV blocking property compared with common ZnO/cotton composite. Firstly, the cotton fibers were pre-treated by hydrogen peroxide solution(H_2 O_2) and sodium hydroxide(NaOH), urea(CON_2 H_4). Secondly, the fabric was fabricated via in situ deposition. The effects of concentration of treatment liquid, ammonia-smoking time and curing temperature on the tensile property of the fabric, UV blocking property and water-washing durability test of as-obtained cotton fabrics were investigated. Thirdly, the as-obtained cotton sample was characterized by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM). It was shown that ZnO nanoparticles were assembled between cotton fibers, the surface and inside of the lumen and the mesopores of cotton fibers, while the content of nano-ZnO assembled in fabric can reach 15.63 wt%. It is proved that the finished fabric can obtain a very excellent UV blocking property, under the condition of zinc ion in concentration of 15 wt%, ammonia-smoking time for 10 min, curing temperature at 150 ℃ for 2 min.
In order to fabricate a novel ZnO/cotton composite, a high proportion of ZnO nanoparticles were assembled in cotton fibers, and the as-obtained cotton fabric can possess better UV blocking property compared with common ZnO/cotton composite. Firstly, the cotton fibers were pre-treated by hydrogen peroxide solution(H;O;) and sodium hydroxide(NaOH), urea(CON;H;). Secondly, the fabric was fabricated via in situ deposition. The effects of concentration of treatment liquid, ammonia-smoking time and curing temperature on the tensile property of the fabric, UV blocking property and water-washing durability test of as-obtained cotton fabrics were investigated. Thirdly, the as-obtained cotton sample was characterized by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM). It was shown that ZnO nanoparticles were assembled between cotton fibers, the surface and inside of the lumen and the mesopores of cotton fibers, while the content of nano-ZnO assembled in fabric can reach 15.63 wt%. It is proved that the finished fabric can obtain a very excellent UV blocking property, under the condition of zinc ion in concentration of 15 wt%, ammonia-smoking time for 10 min, curing temperature at 150 ℃ for 2 min.
基金
Funded by the National Key R&D Program of China(2017YFB0309100)