期刊文献+

Image Blind Deblurring Using an Adaptive Patch Prior 被引量:1

Image Blind Deblurring Using an Adaptive Patch Prior
原文传递
导出
摘要 Image blind deblurring uses an estimated blur kernel to obtain an optimal restored original image with sharp features from a degraded image with blur and noise artifacts. This method, however, functions on the premise that the kernel is estimated accurately. In this work, we propose an adaptive patch prior for improving the accuracy of kernel estimation. Our proposed prior is based on local patch statistics and can rebuild low-level features,such as edges, corners, and junctions, to guide edge and texture sharpening for blur estimation. Our prior is a nonparametric model, and its adaptive computation relies on internal patch information. Moreover, heuristic filters and external image knowledge are not used in our prior. Our method for the reconstruction of salient step edges in a blurry patch can reduce noise and over-sharpening artifacts. Experiments on two popular datasets and natural images demonstrate that the kernel estimation performance of our method is superior to that of other state-of-the-art methods. Image blind deblurring uses an estimated blur kernel to obtain an optimal restored original image with sharp features from a degraded image with blur and noise artifacts. This method, however, functions on the premise that the kernel is estimated accurately. In this work, we propose an adaptive patch prior for improving the accuracy of kernel estimation. Our proposed prior is based on local patch statistics and can rebuild low-level features,such as edges, corners, and junctions, to guide edge and texture sharpening for blur estimation. Our prior is a nonparametric model, and its adaptive computation relies on internal patch information. Moreover, heuristic filters and external image knowledge are not used in our prior. Our method for the reconstruction of salient step edges in a blurry patch can reduce noise and over-sharpening artifacts. Experiments on two popular datasets and natural images demonstrate that the kernel estimation performance of our method is superior to that of other state-of-the-art methods.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2019年第2期238-248,共11页 清华大学学报(自然科学版(英文版)
关键词 BLIND DEBLURRING ADAPTIVE PATCH prior KERNEL estimation low-level features INTERNAL PATCH information blind deblurring adaptive patch prior kernel estimation low-level features internal patch information
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部