期刊文献+

Using Portable Gamma-Ray Spectrometry for Testing Uranium Migration: A Case Study from the Wadi El Kareim Alkaline Volcanics,Central Eastern Desert, Egypt

Using Portable Gamma-Ray Spectrometry for Testing Uranium Migration: A Case Study from the Wadi El Kareim Alkaline Volcanics, Central Eastern Desert, Egypt
下载PDF
导出
摘要 The 300±20 Ma anomalously radioactive trachytes of Wadi El Kareim, central Eastern Desert, are a significant example of U-mineralization related to the alkaline volcanics in Egypt. Extensive portable gamma-ray spectrometric data has been utilized to identify geological factors controlling uranium mobility in the geological units along the three detailed study locations of Kab Al-Abyad, South Wadi(W) Al-Tarafawy and W. Al-Farkhah; their eT h/eU ratios averaging around 4.1, 3.7 and 5.6 respectively. Quantitative analysis with the integration of mobility maps and geological studies suggest two systems controlling U-migration within the geological units(confined system and unconfined system). In the confined system, the syngenetically formed U have experienced mobility after leaching and are redistributed in the presence of an incorporation carrier during transportation(probably as carbonate complexes). Then the retardant for uranium is achieved by sorption or by coprecipitation with the aid of Fe oxy-hydroxide, and finally the formation of immobile secondary U-bearing minerals takes place along a lithogeochemical trap. In contrast to the confined system, the unconfined one is basically lacking the lithogeochemical trap which influences the final accumulation of U-bearing minerals. The radioactivity of the trachyte rocks arises from the radioactive minerals uranophane and betauranophane with U-and/or Th-bearing minerals samarskite, Th-rich REE silicates, monazite and allanite. The 300±20 Ma anomalously radioactive trachytes of Wadi El Kareim, central Eastern Desert, are a significant example of U-mineralization related to the alkaline volcanics in Egypt. Extensive portable gamma-ray spectrometric data has been utilized to identify geological factors controlling uranium mobility in the geological units along the three detailed study locations of Kab Al-Abyad, South Wadi(W) Al-Tarafawy and W. Al-Farkhah; their eT h/eU ratios averaging around 4.1, 3.7 and 5.6 respectively. Quantitative analysis with the integration of mobility maps and geological studies suggest two systems controlling U-migration within the geological units(confined system and unconfined system). In the confined system, the syngenetically formed U have experienced mobility after leaching and are redistributed in the presence of an incorporation carrier during transportation(probably as carbonate complexes). Then the retardant for uranium is achieved by sorption or by coprecipitation with the aid of Fe oxy-hydroxide, and finally the formation of immobile secondary U-bearing minerals takes place along a lithogeochemical trap. In contrast to the confined system, the unconfined one is basically lacking the lithogeochemical trap which influences the final accumulation of U-bearing minerals. The radioactivity of the trachyte rocks arises from the radioactive minerals uranophane and betauranophane with U-and/or Th-bearing minerals samarskite, Th-rich REE silicates, monazite and allanite.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2214-2232,共19页 地质学报(英文版)
关键词 radioactivity URANIUM migration systems alkaline volcanics EGYPT radioactivity uranium migration systems alkaline volcanics Egypt
  • 相关文献

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部