期刊文献+

基于编解码和局部增强的光电图像分割算法 被引量:2

A Segmentation Algorithm of Optoelectric Images Based on Encoder-Decoder Structure and Local Image Enhancement
原文传递
导出
摘要 针对光电图像语义分割问题,提出了一种基于编解码(Encoder-Decoder)结构和图像局部增强的分割算法。首先,采用基于互质因子的空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块减小多尺度空洞卷积(Atrous Convolution)引入的网格效应,提升卷积核的像素近邻信息表征能力;其次,对分割难度较大的图像局部区域,采用融合平均交并比(Mean Intersection Over Union,MIOU)和交叉信息熵的损失函数,结合权值衰减策略,提高这些局部区域的像素权重。实验结果表明,提出的改进算法能有效提升图像语义分割精度。 For semantic segmentation of optoelectric images, it proposes a segmentation algorithm based on encoder-decoder structure and local image enhancement. Firstly, the algorithm adopts an atrous spatial pyramid pooling(ASPP)module based on coprime factors to reduce the grid effect caused by multiscale convolution and improve the capability of representing pixel adjacent information of convolution kernels. Secondly, in order to improve pixel weight of areas that are difficult to segment, the algorithm combines loss function consisting of mean intersection and cross entropy with weight decay strategy. Experimental results show that the proposed algorithm can effectively improve the accuracy of image semantic segmentation.
作者 李承珊 蒋平 崔雄文 马震环 雷涛 LI Chengshan;JIANG Ping;CUI Xiongwen;MA Zhenhuan;LEI Tao(Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu 610209,CHN;University of Chinese Academy of Sciences,Beijing 100049,CHN)
出处 《半导体光电》 CAS 北大核心 2018年第6期892-897,共6页 Semiconductor Optoelectronics
基金 中国科学院青年创新促进会项目(2016336)
关键词 语义分割 空洞卷积 编解码结构 互质因子 局部增强 semantic segmentation atrous convolution encoder-decoder structure coprime factors local enhancement
  • 相关文献

参考文献4

二级参考文献84

  • 1刘缠牢,谭立勋,李春燕,马刚.红外图像伪彩色编码和处理[J].应用光学,2006,27(5):419-422. 被引量:22
  • 2章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 3HUANCi Kaiqi, REN Weiqiang, TAN Ticniu. A reviewon image ohjcct classification and dcicction [J]. ChineseJournal of Computcrs,2014 , 37(6) : 1225-1240.
  • 4DENG J, DONG W, SOCHER R, ct al. Imagcnet: Alarge-scalc hierarchical image database [C]. IEEE Con-ference on Computer Vision and Pattern Recognition?2009: 248 - 255.
  • 5KRIZHP:VSKY A,SUTSKEVEK I, HINTON G E.Imagcnct classification with deep convolutional neuralnetworks [C]. Neural Information Processing Systems.2012: 1097- 1105.
  • 6EVERINGHAM M, ESLAMI S A, VAN GOOL U etal. The pascal visual object classes challenge: A retro-spective [J]. International Journal on Computer Vision,2014, 111(1): 98-136.
  • 7HAR1HARAN B, ARBP:LAEZ P, BOURDEV U ct al.Semantic contours from inverse detcctors [C]. IEF1E In-ternational Conference on Computer Vision,2011: 991-998.
  • 8MOTTAGHI K, C!IEN X,LIU X,et al. The role ofcontext for object dctcction and semantic segmentationin the wild [C]. IEEE Conference on Computer Visionand Pattern Recognition, 2014: 891 - 898.
  • 9CHEN X,MOTTAGHI R, LIU X,et al. Detect whatyou can: Detecting and representing objects using holis-tic models and body parts [C]. IEEE Conference onComputer Vision and Pattern Recognition, 2014 : 1971-1978.
  • 10WANG J? YUILLE A L. Semantic part segmentation u-sing compositional model combining shape and appear-ance [C]. IEEE Conference on Computer Vision andPattern Recognition, 2015 : 1788-1797.

共引文献65

同被引文献9

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部