期刊文献+

偏压对射频空心阴极放电特性影响的PIC/MCC模拟研究 被引量:2

Effect of Bias Voltage on RF Hollow Cathode Discharge:A Simulation Study
原文传递
导出
摘要 采用粒子网格(PIC)法与Monte Carlo碰撞(MCC)模型相结合的方法(PIC/MCC法),研究了在射频空心阴极放电系统中,负直流偏压(-10~-50 V)对放电特性的影响。通过模拟获得了在不同的外加负直流偏压下,空心电极孔内的电子密度、径向电场、轴向电场等参数的变化。计算结果表明,随着偏压从-10增加到-50 V,阴极孔内电子密度和径向、轴向电场逐渐增大;加偏压的孔内电子密度和径向、轴向电场比不加偏压的更大。从放电早期到达到稳定放电的过程中,电子逐渐从接地阳极附近移入空心电极孔内,孔内电子密度和径向、轴向电场随时间增长而增大;在同一时刻,放电系统施加偏压的孔内电子密度和径向、轴向电场比不加偏压的更大。达到稳定放电后,孔内电子密度和径向、轴向电场等不再发生变化。 The RF hollow cathode discharge was mathematically formulated with 2-D particle-in-cell/Monte Carlo collision (PIC-MCC)model and numerically simulated with PIC/MCC software.The influence of the biasvoltage,on the discharge properties,including the electron peak density and electric field profile in the hollow cathode,was investigated.The simulated results show that the bias voltage has a major impact.To be specific,as the bias voltage increases from -10into -50V,the peak electron density,radial-and axial-field distributions,much large than those without bias voltage,significantly increase.In approaching to steady discharge state,the increasing bias voltage strongly drives electrons from the vicinity of grounded anode into the hollow electrode hole,resulting in considerable enhancement of the highly stable peak electron density and e-field profile.
作者 贺柳良 欧阳吉庭 黄伟 马黎君 He Liuliang;Ouyang Jiting;Huang Wei;Ma Lijun(College of Science ,Beijing University of Civil Engineering and Architecture ,Beijing100044,China;School of Physics,Beijing Institute of Technology,Beijing 100081,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2018年第12期1075-1079,共5页 Chinese Journal of Vacuum Science and Technology
基金 北京建筑大学市属高校基本科研业务费专项资金资助(X18221) 国家自然科学基金项目(11005009)
关键词 射频放电 空心阴极放电 直流负偏压 PIC/MCC模拟 Radio frequency discharge Hollow cathode discharge DC negative bias voltage PIC/MCC simulation
  • 相关文献

参考文献3

二级参考文献34

  • 1周开亿.空心阴极放电及其应用[M].北京:真空科学与技术杂志社,1983.
  • 2King K, Zoltan D. Hybrid model of a plane parallel hollow-cathode discharge[J]. Journal of Physics D: Applied Physics, 2000, 33(9): 1081-1089.
  • 3Sullivan J V, Walsh A. High intensity hollow-cathode lamps[J]. Spec- trochim. Acta, 1965, 21(4): 721-726.
  • 4Goebel D M, Katz I. Fundamentals of electric propulsion: ion and hall thrusters [M]. New Jersey, USA: John Wiley & Sons, 2008.
  • 5Manheimer W M. Plasma reflectors for electronic beam steering in radar systems[J]. IEEE Transactions on Plasma Science, 1991, 19(6): 1228-1234.
  • 6Mathew J, Femsler R F, R A Meger, et al. Generation of Large Area, Sheet Plasma Mirrors for Redirecting High Frequency Microwave Beams[J]. Physical Review Letters, 1996, 77(10): 1982-1985.
  • 7Joseph A G, Richard F F, Robert A M. Measurement of a planar dis- charge and its interaction with a neutral background gas[J]. IEEE Transactions on plasma science, 2003, 31 (6): 1305-1312.
  • 8Ohtsu Y, Urasaki H. Development of a high-density radiofrequency plasma source with aring-shaped trench hollow electrodefor dry processing[J]. Plasma Sources Science & Technology, 2010, 19(4): 045012.
  • 9Tabuchia T, Toyoshima Y, Takashiri M. Effect of reducing impurity concentration of microcrystalline silicon thin films for solar ceils using radio frequency hollow electrode enhanced glow plasma[J]. Vacuum, 2014, 101: 125-129.
  • 10Ohtsu Y, Fujita H. Production of high-density capacitive plasma by the effects of multihollow cathode discharge and high secondary electro- nemission[J]. Applied Physics Letters, 2008, 92(17): 171501.

共引文献6

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部