期刊文献+

基于小波神经网络的建筑BIM能耗预测算法研究(英文) 被引量:8

Research on building BIM energy consumption prediction algorithm based on wavelet neural network
下载PDF
导出
摘要 为了提高城市建筑能源管理的效率,从而实现节能减排目的,提出了一种基于小波神经网络的建筑BIM能耗预测算法。该方法首先根据限制因素建立了标准的建筑模型。然后根据简化原则,以某商务型公寓楼为例通过BIM技术对建筑模型进行了参数化。最后运用BP小波神经网络对模型能耗进行预测算。仿真实验结果显示,提出方法的预测误差在合理范围内,验证了其可行性。 In order to improve the efficiency of urban building energy management and achieve energy saving and emission reduction,a building BIM energy consumption prediction algorithm based on wavelet neural network is proposed.This method first establishes a standard building model based on the constraints.Then,based on the principle of simplification,the BIM technology was used to parameterize the building model by using a commercial apartment building as an example.Finally,using BP wavelet neural network to predict the model energy consumption.Simulation results show that the prediction error of the proposed method is within a reasonable range, and its feasibility is verified.
作者 张先锋 Xian-feng ZHANG(School of Economics &Management,China University of Geosciences ,Wuhan 430030,China)
出处 《机床与液压》 北大核心 2018年第24期42-47,93,共7页 Machine Tool & Hydraulics
基金 The Research for Project Management Teachers on Construction Project Practice Ability in BIM(2017A26)~~
关键词 建筑 节能减排 能耗预测 模型参数 BIM 小波神经网络 Buildings Energy saving and emission reduction Energy consumption prediction Model parameters BIM Wavelet neural network
  • 相关文献

参考文献4

二级参考文献27

  • 1潘毅群,吴刚,Volker Hartkopf.建筑全能耗分析软件Energy Plus及其应用[J].暖通空调,2004,34(9):2-7. 被引量:76
  • 2邱林,王文海,郑树伟.地板供冷配合置换通风的实验研究[J].流体机械,2007,35(6):5-7. 被引量:2
  • 3Energy Estimating and Modeling Methods, 2005 ASHRAE Handbook-Fundamentals (SI)[M].
  • 4S.Sp. Pappas, L. Ekonomou, P. Kammpelas, et al. Electricity demandload forecasting of the Hellenic power system using an ARMA model [J]. Electric Power Systems Research,2010(80):256-264.
  • 5闫振华.基于蒸发冷却辐射供冷/热空调系统实验研究[D].西安:西安工程大学,2008.
  • 6Zhen T, James A L. A field study of occupant thermal comfort and thermal environments with radiant slab cooling [ J ]. Building and Environment, 2008, 43 : 1658-1670.
  • 7Jan F, Mats S, Bahram M. Experimental investigation of the velocity field and airflow pattern generated by cooling ceiling beams [ J ]. Building and Environment, 2001, 36: 891-899.
  • 8Tiberiu C, Joseph V, Frederic K. Evaluation of ther- mal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling [ J ]. Building and Environment, 2009, 44 : 1740- 1750.
  • 9Yongmei Xuan, Fu Xiao, Shengwei Wang. The Influ- ence of Types of Radiation Terminals on Indoor Tem- perature and Velocity Distribution[ C ]. ISHVAC2009, 868 -877.
  • 10ASHRAE. 2005 ASHRAE Handbook-Fundamentals(SI)[M]. Atla -nta: ASHRAE, 2005.

共引文献90

同被引文献95

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部