摘要
受"仿生学"思想启发,尝试将球状凹坑非光滑形态应用于某典型高负荷扩压叶栅吸力面侧,以探究其对叶栅流动特性的影响.选取吸力面侧38%~60%弦长处4排深度介于0. 2 mm~0. 6 mm的凹坑为研究对象,基于经实验校核后的雷诺时均方法进行定常计算.结果表明:凹坑阵列能够有效消除沿叶展方向的分离泡,同时使得叶栅角区流向分离位置向叶片尾缘处移动.在设计马赫数下,凹坑对于通道涡沿叶展方向的抬升也起到抑制作用,简化了角区内涡系结构.基于上述原因,本文在吸力面附面层分离位置前设计的五种凹坑方案均能有效降低叶栅出口总压损失,损失降低最多达10. 8%;且随着凹坑深度的增加,损失呈现递增的趋势.
Inspired by idea of “bionics”, this paper attempted to apply the nonsmooth shape of spherical dimples to the suction surface of a typical highly loaded compressor cascade to explore its influence on the flow characteristics of the cascade. Four rows dimples with depths of 0.2 mm^0.6 mm at the 38%~60 % chord length on the suction side were selected as research object, and the Reynolds averaged method based on experimental verification was used for steady calculation. Results show that the array of dimples can effectively eliminate the separation bubble along the direction of blade spanning, and make the streamwise separation position of corner region move to the trailing edge of the blade at the same time. Under the designed Mach number, the dimple also inhibits the migration of passage vortex along the spanwise direction, simplifying the vortex structure in the corner zone. Based on the above reasons, the five kinds of dimples arranged upstream from the separation region can effectively reduce the total pressure loss at the exit of cascade, and the maximum loss reduction is up to 10.8 %. Additionally, the flow loss shows an increasing trend with the increase of dimple depth.
作者
杨益
陆华伟
郭爽
庞文瑄
王宇
钟兢军
YANG Yi;LU Hua-wei;GUO Shuang;PANG Wen-xuan;WANG Yu;ZHONG Jing-jun(Naval Architecture & Ocean Engineering College, Dalian Maritime University, Dalian 116026, China;School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China)
出处
《大连海事大学学报》
CAS
CSCD
北大核心
2018年第4期83-91,共9页
Journal of Dalian Maritime University
基金
国家自然科学基金资助项目(51676023
51506022
51436002)
辽宁省自然科学基金资助项目(201602078)
中央高校基本科研业务费专项资金资助项目(3132017011
DUT16K08)
关键词
凹坑
高负荷扩压叶栅
旋涡结构
流动损失
dimple
highly loaded compressor cascade
vortex structure
flow loss