期刊文献+

High performance TiP_2O_7 nanoporous microsphere as anode material for aqueous lithium-ion batteries 被引量:3

High performance TiP_2O_7 nanoporous microsphere as anode material for aqueous lithium-ion batteries
原文传递
导出
摘要 This work developed a facile way to mass-produce a carbon-coated TiP_2O_7 nanoporous microsphere(TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method. TiP_2O_7 shows great prospect as anode for aqueous rechargeable lithium-ion batteries(ALIBs) in view of its appropriate intercalation potential of-0.6 V(vs. SCE) before hydrogen evolution in aqueous electrolytes. The resulting sample presents the morphology of secondary microspheres(ca. 20 μm) aggregated by carbon-coated primary nanoparticles(100 nm), in which the primary nanoparticles with uniform carbon coating and sophisticated pore structure greatly improve its electrochemical performance. Consequently, TPONMS delivers a reversible capacity of 90 mA h/g at 0.1 A/g, and displays enhanced rate performance and good cycling stability with capacity retention of 90% after 500 cycles at 0.2 A/g. A full cell containing TPO-NMS anode and LiMn_2O_4 cathode delivers a specific energy density of 63 W h/kg calculated on the total mass of anode and cathode. It also shows good rate capacity with56% capacity maintained at 10 A/g rate(vs. 0.1 A/g), as well as long cycle life with the capacity retention of 82% after 1000 cycles at 0.5 A/g. This work developed a facile way to mass-produce a carbon-coated TiP_2O_7 nanoporous microsphere(TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method. TiP_2O_7 shows great prospect as anode for aqueous rechargeable lithium-ion batteries(ALIBs) in view of its appropriate intercalation potential of-0.6 V(vs. SCE) before hydrogen evolution in aqueous electrolytes. The resulting sample presents the morphology of secondary microspheres(ca. 20 μm) aggregated by carbon-coated primary nanoparticles(100 nm), in which the primary nanoparticles with uniform carbon coating and sophisticated pore structure greatly improve its electrochemical performance. Consequently, TPONMS delivers a reversible capacity of 90 mA h/g at 0.1 A/g, and displays enhanced rate performance and good cycling stability with capacity retention of 90% after 500 cycles at 0.2 A/g. A full cell containing TPO-NMS anode and LiMn_2O_4 cathode delivers a specific energy density of 63 W h/kg calculated on the total mass of anode and cathode. It also shows good rate capacity with56% capacity maintained at 10 A/g rate(vs. 0.1 A/g), as well as long cycle life with the capacity retention of 82% after 1000 cycles at 0.5 A/g.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第1期118-125,共8页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(21333002) the National Key Research and Development Plan(2016YFB0901500)
关键词 AQUEOUS LITHIUM-ION batteries H2 evolution reaction anode TiP2O7 spray drying aqueous lithium-ion batteries H2evolution reaction anode TiP2O7 spray drying
  • 相关文献

同被引文献12

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部