期刊文献+

结合深度可分离卷积与通道加权的全卷积神经网络视网膜图像血管分割 被引量:12

Segmentation of retinal image vessels based on fully convolutional network with depthwise separable convolution and channel weighting
原文传递
导出
摘要 糖尿病和高血压等疾病会引起视网膜血管的形状发生变化,眼底图像血管分割是疾病定量分析过程中的关键步骤,对临床疾病的分析和诊断具有指导意义。本文提出一种结合深度可分离卷积与通道加权的全卷积神经网络(FCN)视网膜图像血管分割方法。首先,对眼底图像的绿色通道进行CLAHE及Gamma校正以增强对比度;然后,为了适应网络训练,对增强后的图像进行分块以扩充数据;最后,以深度可分离卷积代替标准的卷积方式以增加网络宽度,同时引入通道加权模块,以学习的方式显式地建模特征通道的依赖关系,提高特征的可分辨性。将二者结合应用于FCN网络中,以专家手动标识结果作为监督在DRIVE数据库进行实验。结果表明,本文方法在DRIVE库的分割准确性能够达到0.963 0,AUC达到0.983 1,在STARE库的分割准确性可以达到0.962 0,AUC达到0.983 0。在一定程度上,本文方法具有更好的特征分辨性,分割性能较好。 Diseases such as diabetes and hypertension can lead to change the shape of the retinal blood vessels.Segmentation of fundus images is a key step in the process of quantitative analysis of the disease,which is instructive in the analysis and diagnosis of clinical diseases.In this paper,a method for the segmentation of retinal image vessels based on fully convolutional network(FCN) with depthwise separable convolution and channel weighting is presented.Firstly,CLAHE and Gamma correction of the green channel of the fundus image are used to enhance the contrast.Then,in order to adapt to network training,the enhanced image is divided into patches to expand the data.Finally,the depthwise separable convolution instead of the standard convolution method is used to increase the network width.Meanwhile,the channel weighting module is introduced to explicitly model the relationship between the characteristic channels in order to improve the distinguishability of the features.The combination of them is applied to the FCN and the results of expert manual identification are used to supervise the experiment on the DRIVE database.The results show that the segmentation accuracy of the proposed method in DRIVE database reached 0.963 0 and AUC reached 0.983 1.The segmentation accuracy in STARE database reached 0.962 0 and AUC achieved 0.983 0.To some extent,the proposed method has better feature resolution and better segmentation performance.
作者 耿磊 邱玲 吴骏 肖志涛 张芳 GENG Lei;QIU Ling;WU Jun;XIAO Zhitao;ZHANG Fang(Tianjin Polytechnic University,School of Electronics and Information Engineering,Tianjin 300387,P.R.China;Tianjin Key Laboratory of Optoelectronic Detection and Systems,Tianjin 300387,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2019年第1期107-115,共9页 Journal of Biomedical Engineering
基金 国家自然科学基金项目(61601325 61771340) 中国纺织工业联合会应用基础研究项目(J201509)
关键词 视网膜血管分割 全卷积神经网络 深度可分离卷积 通道加权 segmentation of retinal blood vessels fully convolutional network depthwise separable convolution channel weighting
  • 相关文献

同被引文献68

引证文献12

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部