期刊文献+

基于智能手机APP的非合作目标三维重建与交互

Space non-cooperative target 3D reconstruction and interaction based on smartphone APP
原文传递
导出
摘要 基于"软件定义卫星"的思想,设计并实现了一套利用天基观测序列对非合作目标进行三维重建的软件系统。考虑卫星与地面用户的交互性,该软件系统由2部分组成:星上云节点软件以及地面用户软件。在该软件系统中,普通用户可以通过地面用户软件,实时观测太空中非合作目标的三维结构,加强对太空的了解;对科研人员而言,对非合作目标的三维重建是对非合作目标进行抓取、捕获、提供在轨服务等进一步研究的基础。为了满足对非合作目标定轨、定姿的进一步需求,软件系统提供了三维重建中生成的匹配特征点的位置信息以及非合作目标与摄像机本体之间的向量信息。针对利用运动恢复结构(SFM)恢复三维结构存在的点云稀疏、可视化效果差的问题,采用SFM稀疏重建获得点云的基础上,进行泊松表面分布重建,获得致密、均匀的网格表面。由于缺乏空间非合作目标成像数据,采用地面仿真数据进行实验,结果表明,使用该方法可以完成对非合作目标的三维重建,重建效果好,并且三维重建中获得的匹配特征点数据可以对非合作目标的定姿、定轨提供数据支持。 In this paper,a software system is designed and implemented,which uses space-based observation sequence to reconstruct the 3 D non-cooperative target based on the thought of software defined satellites. Considering the interaction between the satellite and the ground users,the system consists of two parts:software on the satellite cloud node and an APP on the ground users. In this system,normal users can watch the 3 D structure of the space targets in real time and improve their knowledge of the space. For researchers,the 3 D reconstruction of non-cooperative targets is the basis for further research such as capturing and providing on-orbit services. In order to meet the further requirements of non-cooperative target orbit and pose determination,the system provides the position information of matching feature points generated in 3 D reconstruction and the vector information between non-cooperative target and camera ontology. In order to solve the problem of sparse point clouds and poor visualization in 3 D reconstruction using structure from motion( SFM),Poisson surface distribution reconstruction is carried out on the basis of sparse point cloud reconstruction using SFM to obtain dense and uniform grid surface. Owing to the lack of the non-cooperative space target imaging data,the ground imaging simulation is carried out to verify the algorithm. The results show that this method can be used to reconstruct the 3 D non-cooperative target and the reconstruction is accurate. Meanwhile,the recovery 3 D point cloud can be used to determine the orbit and attitude of the non-cooperative space target.
作者 翟敏 刘华平 张天昱 卢山 许静文 ZHAI Min;LIU Huaping;ZHANG Tianyu;LU Shan;XU Jmgwen(Department of Computer Science and Teehnology,Tsinghua University,Beijing 100084,China;State Key Laboratory of Aerospace Dynamics,Xi'an Satellite Monitoring Center,Xi'an 710041,China;Department of Electronic Information and Engineering,Xi'an Jiaotong University,Xi'an 710072,China;Shanghai Aerospace Control Technology Institute,Shanghai 201109,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第12期2637-2643,共7页 Journal of Beijing University of Aeronautics and Astronautics
关键词 非合作空间目标 三维重建 运动恢复结构(SFM) CMVS/PMVS 软件系 智能手机APP space non-cooperative target 3D reconstruction structure from motion (SFM) CMVS/PMVS software system smartphone APP
  • 相关文献

参考文献4

二级参考文献50

  • 1Kutulakos K,Seitz S. A Theory of Shape By Space Carving[J].International Journal of Computer Vision,2000,(03):199-218.doi:10.1023/A:1008191222954.
  • 2Okutami M,Kanade T. A Multiple-Baseline Stereo System[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,(04):353-363.
  • 3Seitz S M,Dyer C M. Photorealistic Scene Recon struction By Voxel Coloring[A].San Juan Puerto Rico,1997.
  • 4Furukawa Y,Ponce J. Carved Visual Hulls for Image-Based Modeling[A].Rio de Janeiro,Brazil,2007.
  • 5Faugeras O,Keriven R. Variational Principles,Sur Face Evolution,Pde's,Level Set Methods and Stereo Problems[A].1998.336-344.
  • 6Homung A,Kobbelt L. Hierarchical Volumetric Multi-view Stereo Reconstruction of Manifold Surfaces Based on Dual Graph Embedding[A].New York,2006.
  • 7Plollefeys M. Visual 3D Modeling From Images[R].University of North Carolina-Chapel Hill,USA,.
  • 8Furukawa Y,Ponce J. Accurate,Dense,and Robust Multiview Stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,(08):1362-1376.
  • 9Ikeuchi K,Sato Y. Modeling from Reality[A].Que'bec City,Canada,2001.
  • 10Paris S,Sillio Fn,Quan L. A Surface Reconstruction Method Using Global Graph Cut Optimization[J].International Journal of Computer Vision,2006,(02):141-161.doi:10.1007/s11263-005-3953-x.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部