期刊文献+

交叉熵蝙蝠算法求解期权定价模型参数估计问题

Calibrating option pricing models with cross entropy bat algorithm
原文传递
导出
摘要 期权定价模型的参数估计问题通常是非线性优化问题,且是非凸优化问题,经典的优化方法已不再适用。为此探寻用交叉熵蝙蝠算法来求解Merton跳-扩散模型、Heston随机波动模型和Bates带跳的随机波动模型的参数估计问题。实证结果表明该方法是有效可行的。 Parameter estimation of option pricing model is usually a nonlinear optimization problem with no convex,which leads to the classical optimization method cannot be applied. Based on cross entropy bat algorithm,we studied howto solve parameter estimation problems of option pricing models such as Merton’s jump-diffusion model,Heston’s stochastic volatility model and Bates’s stochastic volatility with jump model. The empirical results showthat the cross entropy bat algorithm is feasible and effective for solving the parameter estimation problems of option pricing model.
作者 李国成 王继霞 LI Guo-cheng;WANG Ji-xia(School of Finance & Mathematics,West Anhui University,Lu'an 237012,Anhui,China;School of Mathematics and Informarion Sciences,Henan Normal University,Xinxiang 453007,Henan,China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2018年第12期80-89,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(U1504701) 安徽省科技厅软科学研究项目(1607a0202027) 安徽省高等学校省级人文社会科学研究重点项目(SK2016A0971)
关键词 交叉熵蝙蝠算法 期权定价模型 参数估计 跳-扩散模型 随机波动模型 cross entropy bat algorithm option pricing model parameter estimation jump-diffusion model stochastic volatility model
  • 相关文献

参考文献6

二级参考文献58

  • 1毛明来,陈通,徐正国.SV类模型体系探讨[J].西北农林科技大学学报(社会科学版),2006,6(4):65-68. 被引量:2
  • 2冯彬、陈蓉:《基于香港市场的期权定价模型定价效率实证检验》[D],中国优秀硕士学位论文全文数据库,2008.
  • 3闫沁雪、朱英姿:《利用MCMC对波动率指数期货定价模型的参数估计》[D],中国优秀硕士学位论文全文数据库,2009.
  • 4Andersen, L. , 2006, Efficient Simulation of the Heston Stochastic Volatility Model [R]. Work ing Paper Series.
  • 5Black, F. and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities [J], Journal of Political Economy 81, No. 3, 637-659.
  • 6Cox J. , Ingersoll J. and Ross S. , 1985, A Theory of the Term Structure of Interest Rates [J], Economitrica, 53: 389-408.
  • 7Heston, S. , 1993, A Closed-form Solutions for Options with Stochastic Volatility [J], Review of Financial Studies, 6, 327-343.
  • 8Hull J. C. , and White A. , 1987, The Pricing of Options on Assets with Stochastic Volatilities [J], Journal of Finance, 42, 281-300.
  • 9Ingber A. L. , 1996, Adaptive Simulated Annealingasa: Lessons Learned [M], Control and Cybernetics.
  • 10Kahl C. and Jackel P. , 2005, Fast Strong Approximation Monte-Carlo Schemes for Stochastic Vol- atility Models [R], Working Paper, ABN AMRO and University of Wuppertal.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部