摘要
A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.
A unified theoretical aeroservoelastic stability analysis framework for flexible aircraft is established in this paper. This linearized state space model for stability analysis is based on nonlinear coupled dynamic equations, in which rigid and elastic motions of aircraft are both considered.The common body coordinate system is utilized as the reference frame in the deduction of dynamic equations, and significant deformations of flexible aircraft are also fully concerned without any excessive assumptions. Therefore, the obtained nonlinear coupled dynamic models can well reflect the special dynamic coupling mechanics of flexible aircraft. For aeroservoelastic stability analysis,the coupled dynamic equations are linearized around the nonlinear equilibrium state and together with a control system model to establish a state space model in the time domain. The methodology in this paper can be easily integrated into the industrial design process and complex structures.Numerical results for a complex flexible aircraft indicate the necessity to consider the nonlinear coupled dynamics and large deformation when dealing with aeroservoelastic stability for flexible aircraft.
基金
supported by the National Key Research and Development Program of China(No.2016YFB0200703)