期刊文献+

大数据量红外图像非均匀性校正仿真研究 被引量:2

Research on Simulation of Heterogeneity Correction for Large Data Infrared Image
下载PDF
导出
摘要 对红外图像非均匀性进行校正能够提高红外图像质量,对实现红外图像信息的准确完整提取具有重要意义。针对当前红外目标图像校正方法存在的校正过程复杂,且校正效果较差的问题,提出一种基于IMM算法的大数据量红外图像非均匀性校正方法。通过对红外图像的灰度直方图进行双阈值映射,重新分配红外图像的灰度级,并通过自适应增强算法提高图像质量,并通过IMM算法确定图像校正时拟合响应参数状态,构建基于马尔可夫链的状态转换概率矩阵,计算红外图像信号初始状态估计与图像灰度协方差矩阵的输入交互,确定激光探测器的响应参数,校正大数据量红外图像的非均匀性。实验结果表明,所提方法图像校正的性能较好,且校正完成时间较短,校正过程较简单。 The current method to correct the infrared target image has complex correction process and the correction effect is poor. In this article,we focus on a method for correcting non-uniformity of large data volume of infrared image based on IMM algorithm. Through the gray histogram of dual-threshold mapping of infrared image,we redistributed the gray level of infrared image,and then we used the adaptive enhancement algorithm to improve the image quality. Meanwhile,we used IMM algorithm to determine the state of fitting response parameter during image correction. Moreover,we established the matrix of state transition probability based on Markov chain and calculated the Cuff chain calculates the inputting interaction between the initial state estimation of infrared image signal and the gray-scale covariance matrix of image. Finally,we determined the response parameter of laser detector. Thus,we corrected the non-uniformity of large data volume of infrared image. Simulation results show that the proposed method has good performance of image correction. Meanwhile,the completion time of correction is short and the process is simple.
作者 龙虎 张泓筠 LONG Hu;ZHANG Hong-yun(School of Big Data Engineering,Kaili University,Kaili Guizhou 556011,China)
出处 《计算机仿真》 北大核心 2019年第1期205-208,共4页 Computer Simulation
基金 黔东南州科技计划资助项目(黔东南科合J字[2016]002号) 黔东南州科技计划资助项目(黔东南科合J字[2017]001号) 贵州省科技厅联合基金资助项目(黔科合LH字【2014】7229) 贵州省科技厅联合基金资助项目(黔科合LH字【2015】7741)
关键词 大数据量 红外图像 非均匀性 校正 Large data volume Infrared image Non-uniformity Correction
  • 相关文献

参考文献10

二级参考文献76

共引文献25

同被引文献32

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部