期刊文献+

基于十字及其互补形电磁微结构吸波体的传感特性 被引量:3

Sensing characteristics of electromagnetic microstructure wave absorber based on cross and complementary microstructures
下载PDF
导出
摘要 基于时域有限积分计算方法和自由空间实验方法,系统地比较分析十字形超材料吸波器(CSMA)和互补十字形超材料吸波器(CCSMA)的电场极化特性,TE/TM模斜入射角敏感特性及吸波机理。CSMA和CCSMA吸波强度/反射率均可应用于TE模入射波角度传感器设计,而对TM模,CCSMA谐振峰发生明显红移,可应用于频率传感/探测器设计。将吸波体表面覆盖不同厚度的待测样品,两种模型谐振频率均随着磁导率增加而红移,CSMA吸波强度呈线性递减,且厚度越大,敏感度越高; CCSMA与磁导率没有依赖关系,仍旧保持最好吸收。 Using time domain finite integration computation method and free space experimental method,systematically compare and analyze electric field polarization property of cross-shaped metamaterial absorber( CSMA) and complementary CSMA( CCSMA),sensitivity with TE/TM mode oblique incident angles,and wave absorption mechanism. The wave absorptive intensity/reflectivity of both CSMA and CCSMA can be applied in senor design with TE mode incident angles. While for TM mode,harmonic peak of the CCSMA possess obvious red shift,which can be applied in design of frequency sensor/detector. After covered with sample to be tested on the top surface of wave absorber,resonant frequencies of both two models have red shift with increasing of permeability,and intensity of wave absorption of CSMA decreases linearly. The greater the thickness,the higher the sensitivity. CCSMA is dependent with permeability,remaining perfect absorption.
作者 罗靖 宋健 李敏华 LUO Jing;SONG Jian;LI Min-hua(Faculty of Electrical Engineering and Computer Science ,Ningbo University ,Ningbo 315211,China)
出处 《传感器与微系统》 CSCD 2019年第1期15-19,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61501269) 浙江省自然科学基金资助项目(LQ16F010002) 宁波大学王宽诚幸福基金资助项目
关键词 人工电磁媒质 吸波 磁传感 metamaterials wave absorber magnetic sensing
  • 相关文献

参考文献3

二级参考文献43

  • 1Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351.
  • 2Beard M C, Turner D M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146.
  • 3Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth: IEEE) p1575.
  • 4PickweU E, Wallace V P 2006 J. Phys. D: Appl. Phys. 39 R301.
  • 5Siegel P H 2002 IEEE T. Microw Theory 50 910.
  • 6Schmuttenmaer C A 2004 Chem. Rev. 104 1759.
  • 7Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401.
  • 8Veselago V G 1968 Phys. Usp. 10 509.
  • 9Pendry J B 2000 Phys. Rev. Left. 85 3966.
  • 10Lal S, Link S, Halas N J 2007 Nature Photon 1 641.

共引文献19

同被引文献25

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部