摘要
In this paper we pursue the study of the best approximation operator extended from L~Φ to L~φ, where φ denotes the derivative of the function Φ. We get pointwise convergence for the coefficients of the extended best approximation polynomials for a wide class of function f, closely related to the Calder′on–Zygmund class t_m^p(x) which had been introduced in 1961. We also obtain weak and strong type inequalities for a maximal operator related to the extended best polynomial approximation and a norm convergence result for the coefficients is derived. In most of these results, we have to consider Matuszewska–Orlicz indices for the function φ.
In this paper we pursue the study of the best approximation operator extended from L~Φ to L~φ, where φ denotes the derivative of the function Φ. We get pointwise convergence for the coefficients of the extended best approximation polynomials for a wide class of function f, closely related to the Calderon–Zygmund class t_m^p(x) which had been introduced in 1961. We also obtain weak and strong type inequalities for a maximal operator related to the extended best polynomial approximation and a norm convergence result for the coefficients is derived. In most of these results, we have to consider Matuszewska–Orlicz indices for the function φ.
基金
supported by Consejo Nacional de Investigaciones Cientificas y Tecnicas(CONICET)and Universidad Nacional de San Luis(UNSL)with grants PIP(Grant No.11220110100033CO)
PROICO(Grant No.30412)