期刊文献+

WSARE3.0模型在成都市新都区手足口病聚集性疫情早期预警中的应用

Application of WSARE 3.0 Model in Early Warning for Cluster Outbreak of Hand-foot-mouth Disease in Xindu District of Chengdu
原文传递
导出
摘要 目的探讨WSARE 3. 0模型在传染病暴发早期预警中的应用价值。方法运用WSARE 3. 0预警模型对2017年成都市新都区手足口病疫情进行预警。结果 WSARE 3. 0软件共探测到2017年新都区的13个镇(街道)出现了具有统计学意义的手足口病预警信号5次(P <0. 05),其中1月1次,4月2次,6月1次,10月1次,其中2次为双特征变量,3次为单特征变量。结论 WSARE模型对于多元分类资料的异常情况探测要优于单因素方法,但在应用该方法时,要结合数据本身的实际情况及特征,以便能更好的、准确的探测到疫情。 Objective To explore the application value of WSARE 3. 0 model in early warning of infectious disease outbreak. Methods WSARE 3. 0 early warning model was used to predict the epidemic situation of hand-foot-mouth disease in Xindu district of Chengdu in 2017. Results WSARE 3. 0 software detected 5 times of statistically significant early warning signals of hand-foot-mouth disease( P < 0. 05) showed in 13 towns(streets) in Xindu district in 2017,including 1 time in January,2 times in April,1 time in June,1 time in October,of which 2 times were double characteristic variables and 3 times were single characteristic variables.Conclusion WSARE model is superior to univariate method in detecting abnormal situation of multivariate classification data. However, the WSARE model should be combined with the actual situation and characteristics of the data for better and accurate detection of the epidemic situation.
作者 刘媞 兰亚佳 LIU Ti;LAN Yajia(Xindu District Center for Disease Control and Prevention,Chengdu 610500,Sichuan Province,China;West China School of Public Health,Sichuan University,Chengdu 610041,Sichuan Province,China)
出处 《预防医学情报杂志》 CAS 2019年第2期131-135,共5页 Journal of Preventive Medicine Information
关键词 WSARE 手足口病 早期预警 WSARE hand -foot -mouth disease early warning
  • 相关文献

参考文献8

二级参考文献41

  • 1吴艳,于洁,单庆祥,李柄奇.中小学猩红热暴发流行调查[J].中国卫生工程学,2005,4(2):96-97. 被引量:8
  • 2杨延民.肥城市254例手足口病流行病学分析[J].疾病监测,2006,21(12):684-684. 被引量:46
  • 3W K Wong, A W Moore, G F Cooper, et al. Rule-based anomaly pattern detection for detecting disease outbreaks [R]. 18^th National Conference on Artificial Intelhgence, 2002.
  • 4W K Wong, A W Moore, G F Cooper, et al. Bayesian network anomaly pattern detection for disease outbreaks [R]. 20^th International Conference on Machine Learning, 2003.
  • 5W K Wong, A W Moore, G F Cooper, et al. WSARE: What's strange about recent events [J]? Journal of Urban Health, 2003, 80 (2): i66-i75.
  • 6Weng-Keen Wong, Andrew Moore, Gregory Cooper, et al. What's strange about recent events (WSARE) : An Algorithm for the Early Detection of Disease Outbreaks[J]. Journal of MachineLearning Research, 2005, 6: 1961-1998.
  • 7Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing [J]. Journal of the Royal Statistical Society, Series B, 1995, 57: 289-300.
  • 8The Auton Lab [OL]. http: //HYPERLINK "http: //www.autonlab.org" www.autonlab.org, 2009.
  • 9The Auton Lab. WSARE [OL]. http: //www.autonlab.org/autonweb/16620.html, 2009.
  • 10H Gesteland, M Gardner, Fu-Chiang Tsui, et al. Automated Syndromic Surveillance for the 2002 Winter Olympics [J]. Journal of the American Medical Informatics Association, 2003, 10: 547-554.

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部