期刊文献+

云计算资源调度问题求解的布谷鸟搜索算法 被引量:12

Cuckoo Search Algorithm for Solving Problem of Cloud Computing Resource Scheduling
原文传递
导出
摘要 资源调度直接决定云计算系统的性能,是当前研究的热点,针对当前算法存在的执行时间长、计算复杂度高等不足,以提高云计算资源的利用率,提出了布谷鸟搜索算法的云计算资源调度策略。首先对云计算资源调度问题进行分析,采用安全强度和用户需求对虚拟机和安全需求的等级进行评价,然后构建云计算资源调度问题的数学模型,引入布谷鸟搜索算法求解到云计算资源调度数学模型的解,最后在CloudSim平台上对云计算资源调度模型的性能进行了分析。实验结果表明,布谷鸟搜索算法能够快速找到云计算资源调度的最佳方案,可以满足用户的实际要求,且结果好于对比模型。 Resource scheduling is a hot topic in cloud computing research,in view of problems of long execution time and high computational complexity of the current algorithm and to improve the utilization rate of cloud computing resources,a cuckoo search algorithm for cloud computing resource scheduling model is proposed in this paper.Firstly,the cloud computing resource scheduling problem is analyzed,the level of the virtual machine and security requirements are evaluated by using security strength and user’s requirements.Secondly,a mathematical model of the cloud computing resource scheduling problem is constructed,and the cuckoo search algorithm is introduced to solve the mathematical model of cloud computing resource scheduling.Finally,the performance of the cloud computing resource scheduling model is analyzed on the CloudSim platform.The results show that the proposed algorithm can quickly find the scheduling scheme of cloud computing resources and can satisfy the actual request of users,and the result is better than the contrast models.
作者 李佳 夏云霓 LI Jia;XIA Yun-ni(Academy of Innovation Education,Chongqing Radio and TV University,Chongqing 400052,China;College of Computer Science,Chongqing University,Chongqing 400030,China)
出处 《控制工程》 CSCD 北大核心 2019年第1期170-174,共5页 Control Engineering of China
基金 国家自然科学基金面上项目(NSF61472051) 重庆市科委前沿与应用基础研究项目(cstc2014jcyjA40010) 重庆广播电视大学科研项目(YB2016-17)
关键词 云计算系统 资源利用率 资源调度 布谷鸟搜索算法 Cloud computing system resource utilization rate resource scheduling cuckoo search algorithm
  • 相关文献

参考文献11

二级参考文献113

  • 1徐鹏,张岩江,苏森.PaaS云资源调度技术研究[J].华中科技大学学报(自然科学版),2013,41(S2):52-56. 被引量:10
  • 2孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 3Leavitt N. Is Cloud Computing Really Ready for Prime Time? [J]. IEEE Computer Society Press, 2009,42 ( 1 ) :15 20.
  • 4Armbrust M, Fox A, Grith R, et al. Above the clouds:A Berkeley View of Cloud Computing[R]. UCB/EECS-2009-28. Berkeley, USA:Electrical Engineering and Computer Sciences, University of California at Berkeley, 2009.
  • 5Vaquero L, Rodero-Marino L, Caceres J, et al. A break in the clouds: towards a cloud definition [J]. SIGCOMM Computer Communication Review, 2009,39 ( 1 ) : 50-55.
  • 6Lenk A,Klems M, Nimis J, et al. What' s inside the Cloud? An Architectural Map of the Cloud Landscape[C]//Proceedings of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing. 2009 : 23-31.
  • 7Amazon Web Services[EB/OL]. http://aws, amazon, corn/.
  • 8Hadoop[EB/OL]. http://hadoop, apache, org/core.
  • 9Dean J, Ghemawat S. MapReduce: Simplied data processing on large clusters[C]//Proceedings of the 6th Symposium on Operating Systems Design and Implementation. San Francisco, CA, 2004,11(18):137-150.
  • 10Hbase[EB/OL]. http://hadoop, apache, org/hbase/.

共引文献538

同被引文献113

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部