期刊文献+

研究谐波齿轮传动啮合原理的一种新方法 被引量:34

A New Method for Research on Engagement Principle of Harmonic Drive
下载PDF
导出
摘要 介绍一种利用改进的运动学法研究谐波齿轮传动啮合原理的新方法 ,这种方法的特点是几何意义明确 ,特别是针对具有弹性变形构件的谐波齿轮传动更是如此 ,其优点在于针对某一特定的变形形状 (波发生器型式 ) ,可以生成一个只包含运动参数的矩阵 ,这个矩阵当柔轮或刚轮采用不同齿廓时具有不变性。在利用该方法建立的谐波齿轮传动理论啮合方程的基础上 ,研究了啮合参数和结构参数对四齿差谐波齿轮传动共轭区间的影响规律。揭示了谐波齿轮传动中柔轮与刚轮共轭齿廓的相对运动特点。作为验证 ,从本方法出发 ,研制成功了单级传动比为 5 0的谐波传动装置。 A new method for research on the engagement principle of harmonic drive is introduced in this paper, which is derived from an improved kinematics method The geometric meaning concision features in this method, especially in the filed of harmonic drive that has a flexible component.Its advantage lies in the invariance of the matrix that only contains kinematical parameters while the deformation figure of flexspline (wavegenerator figure) is determined, notwithstanding the tooth profiles applied in flexspine and rigidspline. Appending the hypothetic conditions while carrying out the engagement principle research in reference 5, and based on the theoretical engagement equation of harmonic drive established by this method, the conjugate zones' variable law of four-tooth difference(FTD) harmonic drive is studied in this paper, which is effected by the meshing parameters and structure parameters. The characteristics of conjugate profiles' relative movement between flexspline and rigid spline is revealed for the first time. As the verification,to the new method discussed in this paper,a harmonic drive device with single stage ratio 50 has been developed successfully.
作者 辛洪兵
出处 《中国机械工程》 EI CAS CSCD 北大核心 2002年第3期181-183,共3页 China Mechanical Engineering
基金 北京市科技新星计划资助项目 ( 95 481130 0 )
关键词 谐波齿轮传动 啮合原理 共轭齿廓 啮合矩阵 研究方法 传动比 harmonic drive engagement principle conjugate profile engagement matrix
  • 相关文献

参考文献3

二级参考文献4

  • 1卢贤占,齿轮啮合原理(第2版),1984年
  • 2路亚衡,华中理工大学学报,1983年,5期,87页
  • 3谢金瑞.椭圆凸轮波发生器谐波齿轮传动的啮合分析方法[J]光学机械,1980(03).
  • 4张福润,罗伯勋.建立啮合方程的B矩阵法[J].华中理工大学学报,1990,18(2):9-16. 被引量:7

共引文献14

同被引文献157

引证文献34

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部