期刊文献+

带有垂直传染具有年龄结构的接种流行病模型研究 被引量:3

Analysis of an age-structured epidemic model with vaccination and vertical transmission
下载PDF
导出
摘要 研究了一个带有垂直传染、具有年龄结构的接种SIS流行病模型,得到了正平衡解存在性的充分条件. An SIS age-structured epidemic model with vaccination and vertical transmission is studied.The sufficient conditions for the existence of a positive endemic equilibrium are obtained.
出处 《烟台师范学院学报(自然科学版)》 2002年第1期11-15,19,共6页 Yantai Teachers University journal(Natural Science Edition)
关键词 年龄结构 接种流行病模型 垂直传染 正平衡解 生物数学模型 种群模型 age-structure vaccination epidemic model vertical transmission
  • 相关文献

参考文献4

  • 1[1]Doma M E L. Analysis of an age-dependent SIS epidemic model with vertical transmission and pro portionate mixing assumption[J]. Mathematical and Computer Modelling,1999,29:31-43.
  • 2[2]Busenberg S N,Cooke K,Lannelli M.Endemic thresholds and stability in a class of age-structured epidemics[J] ,SIMJ Appl. Math, 1988,48:1379-1395.
  • 3[3]Busenberg S N,Lannelli M,Thieme H R. Global behavior of an age-structured epidemic model[J]. SIAMJ Math Anal, 1991,22(4): 1065-1080.
  • 4[4]Gurtin M,Maccamy R C. Nonlinear age-dependent population dynamics[J],Arch Rat Math,1974, 54: 281-300.

同被引文献15

  • 1郭淑利,李景杰,丁风霞.一类带有垂直传染的年龄结构SIR流行病模型解的存在惟一性(英文)[J].信阳师范学院学报(自然科学版),2004,17(4):395-398. 被引量:5
  • 2郭淑利,李学志.具有垂直传染的年龄结构SEIR流行病模型的稳定性[J].应用数学学报,2005,28(4):735-751. 被引量:11
  • 3Mckendrick A. Applications of mathematics to medical problems[ J]. Proc Edinburgh Math Soc, 1926, 44, 98 - 130.
  • 4Eldoma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption [ J]. Math Comput Model, 1999, 29:31 -43.
  • 5Eldoma M. Global stability results and well posedness of an SI age-structured epidemic model with vertical transmission[ J]. AAM, 2006, 1 (2) : 126 - 140.
  • 6Inaba H. Mathematical an analysis of an age-structured SIR epidemic model with vertical transmission[ J ]. Discrete Cont Dyn-B, 2006, 6 (1) : 69 - 96.
  • 7Langlais M. Global behaviour in age structured SIS model with easonal periodicities and vertical transmission [ J]. J Math Analy Appl, 1997, 213:511 -533.
  • 8Eldoma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing ~ssumption [ J ]. Mathematical and Computer Modelling, 1999, 29:31 -43.
  • 9Eldoma M. Global stability results and well posedness of an SI age-structured epidemic model with vertical transmission[ J]. AAM ,2006,1 (2) : 126 ~ 140.
  • 10Hisashi Inaba. Mathematical an analysis of an age-structured SIR epidemic model with vertical transmission[ J]. Discrete and continuous dynami- cal system (SEIRES B) ,2006,6( 1 ) :69 ~96.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部