期刊文献+

决策树分类法及其在土地覆盖分类中的应用 被引量:47

The Decision Tree Classification and Its Application Research in Land Cover
下载PDF
导出
摘要 基于决策树分类算法在遥感影像分类方面的深厚潜力 ,探讨了 3种不同的决策树算法(UDT、MDT和 HDT)。首先对决策树算法结构、算法理论进行了阐述 ,然后利用决策树算法进行遥感土地覆盖分类实验 ,并把获得的结果与传统统计分类法进行比较。研究表明 ,决策树分类法有诸多优势 ,如 :相对简单、明确、分类结构直观 ,另外 ,与以假定数据源呈一固定概率分布 ,然后在此基础上进行参数估计的常规分类方法相比 ,决策树属于严格“非参”,对于输入数据空间特征和分类标识具有更好的弹性和鲁棒性 (Robust)。 Decision tree classification algorithms have significant potential for remote sensing data classification. In this paper, three different types decision tree classification (UDT, MDT and HDT)are presented. First, the paper discussed the algorithms structure and the algorithms theory of decision tree. Second, decision tree algorithms were used to make land cover classification from remotely sensed data, and the results were compared with conventional statistics classification. The results of this research showed that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. In addition, decision tree algorithms are strictly nonparametric and, therefore, without assumptions regarding the distribution of input data the methods are flexible and robust with respect to general classifications among input features and class labels.
出处 《遥感技术与应用》 CSCD 2002年第1期6-11,共6页 Remote Sensing Technology and Application
基金 河南省杰出青年科学基金资助 (项目编号 :0 0 0 3992 0 )
关键词 决策树分类法 遥感影像 最大似然分类法 土地覆盖 土地利用 Decision tree classification, Remote sensing image, Maximum likelihood classification
  • 相关文献

参考文献4

二级参考文献33

共引文献230

同被引文献558

引证文献47

二级引证文献865

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部