期刊文献+

基于模糊模型相似测量的字符无监督分类法 被引量:3

A Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
下载PDF
导出
摘要 该文提出一种基于模糊模型相似测量的文本分析系统的字符预分类方法 ,用于对字符的无监督分类 ,以提高整个字符识别系统的速度、正确性和鲁棒性 .作者在字符印刷结构归类的基础上 ,采用模板匹配方法将各类字符分别转换成基于一非线性加权相似函数的模糊样板集合 .模糊字符的无监督分类是字符匹配的一种自然范例并发展了加权模糊相似测量的研究 .该文讨论了该模糊模型的特性、模糊样板匹配的规则 ,并用于加快字符分类处理 ,经过字符分类 。 This paper presents a character preclassification method based on similarity measure in Fuzzy model to perform unsupervised character classification for improvement in robustness, correctness, and speed of a character recognition system. On the basis of character typographical structure categorization, a pattern matching is used to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The emphasis of inequality measure for small characters guarantees no misclassification, but a little redundancy is encountered on the fuzzy prototype set. This redundancy can be removed by self grouping of the final prototype set. The fuzzy unsupervised character classification, which is natural in the representation of prototypes for character matching, is developed and a weighted fuzzy similarity measure is explored. A fuzzy model of prototypes is defined and several propositions of the features of the fuzzy model are given. The characteristics of the fuzzy model and rule based matching of fuzzy prototypes are discussed and used in speeding up the classification process. The fuzzy model of prototype has been verified to reduce the effect of noise. Based on prototypes that are free of noise, the recognition problem will be simplified and the speed as well as recognition rate will be increased. For ambiguous characters, probably as merged, the accuracy of postprocessing also will be improved. After classification, the character recognition, which is simply applied on a smaller set of the fuzzy prototypes, becomes much easier and less time consuming.
出处 《计算机学报》 EI CSCD 北大核心 2002年第4期423-429,共7页 Chinese Journal of Computers
基金 国家自然科学基金(7870 0 12 ) 江苏省教委留学回国人员科研基金(199715 5 1) 江苏省教委自然科学研究基金 (99KGB14 0 0 0 9)资助
关键词 模糊模型 加权模糊相似测量 字符无监督分类 匹配算法 分级归类 字符识别 字符匹配 fuzzy model, weighted fuzzy similarity measure, unsupervised character classification, matching algorithm, classification hierarchy
  • 相关文献

参考文献3

二级参考文献9

  • 1Wang L,IEEE Trans Pattern Anal Machine Intell,1993年,15卷,10期,1053页
  • 2De Luca P G,Pattern Recognition,1991年,24卷,7期,609页
  • 3K.Y.Wong,R.G.Casey,and F.M.Wahl."Document analysis system"[].IBM JResDevelopment.1982
  • 4Rosenfeld R,Kak A. C.Digital Pecture Processing[]..1982
  • 5S.C.Hinds,,J.L.Fisher,,D.P.D‘Amato.A Document Skew Detection Method Using Run-length Smearing and the Hough Transform[].Proc intl Confon Pattern Recognition.1990
  • 6Y Nakano,Y Shima,H Fujisacw.An algorithm for the skew nor-malization of document image.Proc.IEEEE 10th nit.Conf.PattemRecognition,Atlantic City,NJ,U[].SA.1990
  • 7Hartigan,J. A. Clustering algorithms . 1975
  • 8P G DeLuca,A Gisotti.Printed character Preclassification basedonword structure[].Pattern Recognition.1991
  • 9霍宇翔,丁宇,陈耘,金龙,周兆英.细化畸变节点形态分析及修正策略研究[J].计算机辅助设计与图形学学报,1997,9(6):500-505. 被引量:11

共引文献11

同被引文献17

  • 1FUKUSHIMA K , WAKE N . Handwritten alphanumeric character recognition by the Neocognitron [ J]. IEEE transactions on neural network, 1991:355 -365.
  • 2CARPENTER G-A, GRESSBERG S. The ART of adaptive pattern recognition by a self-organizing neural network[ A]. IEEE computer,1988,21:77-88.
  • 3LEE H-M, SHEN C-C. A handwritten Chinese characters recognition method based on primitive and fuzzy features via SEART neural net model[C]. IEEE Int. Conf. Syst. Man Cybern. 1995. 1939-1944.
  • 4Zhang J Y, Ding X Q, Chen Y S, et al. Multi-scale feature extraction and nested-subset classifier design for high accuracy handwritten character recognition [A]. In: The 15th ICPR'2000[C]. 2000. 581-584.
  • 5Ching R H, Lee C W, Chen Z, et al. Preclassification of handwritten Chinese character based on basic Stroke substructures [J]. Patt Recogn Lett, 1995,16: 1023- 1032.
  • 6Carpenter G A, Gressberg S. The ART of adaptive pattern recognition by a self-organizing neural network [J]. IEEE Computer,1988, 21: 77-88.
  • 7Fukushima K, Wake N. Handwritten alphanumeric character recognition by the Neocognitron [J]. IEEE Trans on Neural Network,1991. 355 - 365.
  • 8吴佑寿.丁晓青.汉字识别,理论,方法与实现[M].北京:高等教育出版社,1992..
  • 9Y Zhang,X Q Ding et al.Multi-scale feature extraction and nestedsubset classifier design for high accuracy handwritten character recognition[C].In: 15^th ICPR'2000,2000:581-584.
  • 10F H Cheng,W H Hsu.Research on Chinese OCR in Taiwan[C]. In : IPRAI'91,1991 ; 139-164.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部