期刊文献+

一种数据流处理环境下的节点副本放置方法 被引量:1

A Replica Placement Method during Data Stream Processing
下载PDF
导出
摘要 物联网环境下的许多应用表现为传感数据的连续流式处理,且系统往往通过节点的副本技术保障可用性。但是,运行时副本的备份和放置存在内存和带宽等资源开销,产生处理的延迟。该文给出一种方法,根据运行时的资源消耗以贪心方式放置节点的副本,折中了系统的可用性和开销。实际系统的仿真实验表明,在相同的条件下,该方法相比传统的随机放置,能为系统提供更稳定的可用性。 Many applications of Internet of Things (IoT) are performed by the continuous stream processing of the senor data and nodes’ replicas are required to guarantee system availability. However, the replicas’ backup and placement often bring the processing delay at run-time due to the consumption of resources such as memory and bandwidth. In this paper, a method is proposed as greedy fashion by the resources cost to place nodes’ replicas, which could tradeoff between the availability and overheads of the system. Moreover, in a practical system, the extensive experiments show that the availability of the proposed method can be provided in a more stable manner than the traditional random placement under the same conditions.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第7期1755-1761,共7页 Journal of Electronics & Information Technology
基金 北京市属高等学校创新团队建设与教师职业发展计划(IDHT2013 0502) 北京市教育委员会科技计划重点项目(KZ201310009009) 北京市教育委员会科技计划面上项目(KM201310009003)资助课题
关键词 物联网 数据流 可用性保障 副本放置 贪心算法 Internet of Things (IoT) Data stream Availability guarantee Replica placement Greedy algorithm
  • 相关文献

参考文献17

  • 1Rajaraman A,Ullman J. Mining of Massive Datasets[M].Cambridge,United Kingdom:Cambridge UniversityPress,2011.113-114.
  • 2Balazinska M,Balakrishnan H,Madden S R. Fault-tolerance in the borealis distributed stream processing system[A].New York,USA,2005.13-24.
  • 3Gama J. Data stream mining:the bounded rationality[J].INFORMATICA,2013,(04):21-25.
  • 4Repantis T,Kalogeraki V. Replica placement for high availability in distributed stream processing systems[A].Rome,Italy,2008.181-192.
  • 5Hwang J H,Xing Y,Cetintemel U. A cooperative,self-configuring high-availability solution for stream processing[A].Istanbul,Turkey,2007.176-185.
  • 6Chandrasekaran S,Cooper O,Deshpande A. TelegraphCQ:continuous dataflow processing[A].San Diego,California,USA,2003.668.
  • 7Gedik B. Generic windowing support for extensible stream processing systems[J].Software:Practice and Experience,.
  • 8Hwang J H,Balazinska M,Rasin A. High-availability algorithms for distributed stream processing[A].Tokyo,Japan,2005.779-790.
  • 9Gu Y,Zhang Z,Ye F. An empirical study of high availability in stream processing systems[A].Urbanna,Illinois,USA,2009.1-9.
  • 10Repantis T,Gu X,Kalogeraki V. Synergy:sharing-aware component composition for distributed stream processing systems[A].Melbourne,Australia,2006.322-341.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部