期刊文献+

带变号系数的半线性边值问题的非负解(英文)

Nonnegative Solutions of Semilinear Boundary Value Problems with Coefficient that Changes Sign
下载PDF
导出
摘要 利用Schauder不动点定理和上下解方法 ,对边值问题 1p(t) (p(t) y′(t) ) +a(t) f(t,y(t) ) =0 ,limt→ 0 +p(t) y′(t) =0 =y(1)讨论非负解的存在性 .其中 p∈C1(0 ,1)且在 (0 ,1)上 p>0 ,f≥ 0 ,对固定的 y函数 f(t,y)关于t是单调递减的 ,对固定的t函数f(t,y)关于 y是单调递增的 ,a∈C(0 ,1) 可以改变其符号 . This paper deals with the existence of nonnegative solutions to boundary value problems 1p(t)(p(t)y′(t))′+a(t)f(t,y(t))=0, lim t→0+ p(t)y′(t)=0=y(1) where p∈C 1 (0,1) with p>0 on (0,1),f≥0,f(t,y) is nonincreasing with respect to t for each fixed y and nondecreasing with respect to y for each fixed t, and a∈C(0,1) may change sign. Our approach is based on the Schauder fixed point theorem.
作者 程建纲
出处 《烟台大学学报(自然科学与工程版)》 CAS 2002年第2期97-103,共7页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目 (10 0 710 6 6 )~~
关键词 变号系数 半线性边值问题 非负解 存在性 不动点定理 上下解方法 boundary value problem nonnegative solution existence fixed point theorem
  • 相关文献

参考文献7

  • 1[1]Agarwal H,O'Regan D. Singular boundary value problems for superlinear second order ordinary and delay differential equations[J]. J Differential Equations,1996,130:333~355.
  • 2[2]Agarwal H,O'Regan D. Nonlinear superlinear singular and nonsingular second order boundary value problems [J]. J Differential Equations, 1998,143:60~95.
  • 3[3]Lan K,Webb J R L. Positive solutions of semilinear differential equations with singularties[J]. J Differential Equations,1998,148: 407~421.
  • 4[4]Liu Z,Li F. Multiple positive solutions of nonlinear two-point boundary value problems[J]. J Math Anal Appl, 1996,203: 610~625.
  • 5[5]Cac N P,Fink A M. Gatica J A. Nonnegative solutions of the radial Laplacian with nonlinearity that changes sign [J]. Proc Amer Math Soc,1995,123:1393~1398.
  • 6[6]Cac N P,Gatica J A, Yi L. Positive solutions to semilinear problems with coefficient that changes sign[J]. Nonlinear Anal,1999,37: 501~510.
  • 7[7]Hai D D. Positive solutions to a class of elliptic boundary value problems[J]. J Math Anal Appl,1998,227:195~199.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部