期刊文献+

壁面传质扰动有纵向速度的流动问题 被引量:1

THE FLOW WITH MASS TRANSFER AND LONGITUDINALVELOCITY ON THE WALL
下载PDF
导出
摘要 研究壁面有周期性定向抽吸-引射且在壁面上形成纵向速度的二维渠道流动,壁面上的纵向平均速度为〈uω〉.数值结果表明,抽吸-引射的传质倾角θ对流场的性质和壁面上的切应力等有重要的影响.与速度为〈uω〉的运动壁无扰动流动相比,它的阻力偏低,这种阻力偏低与流场的扰动特性有关,即与扰动速度分量的二重相关积分I成正比.阻力在θ>-24°的范围内有减阻效果;能量在θ>8°时有净能量减小的效果. The channel flow with vectored periodic suction-injection which form longitudinalvelocity component on the wall is described. The average longitudinal velocity is (uω) and themass transfer angle for which the positive average velocity comes into being is positive.The computed velocity in flow field can be separated into a spatial average along x and a periodicdisturbance around it. Double correlation of disturbance components involves their magnitudesand phase relation, so it is characteristic of the disturbance field. A relation between change of dragcoefficient on the wall and a double correlation integral of disturbance components in flow fieldis derived for laminar flow, it provides a theoretical basis for analyzing and examining numericalresults.Numerical results show that vectored mass transfer angle has important effects on propertiesin flow field and shear stress distribution on the wall. When average longitudinal velocity (uω)is formed, compared with unperturbed fixed channel flow, the change of drag is composed of twoparts: one is the same as in the unperturbed channel flow for which the wall moves with the samevelocity (uω); the other is correlated with the properties of disturbance field, i.e. it is proportionalto the integral of double correlation of disturbance components. As the integral is negative atpresent, the second part causes the drag to decrease. The effect of drag reduction can be obtainedin the range of mass transfer angles from -24° to 90° and maximum effect can be reached whenthe angle is larger than 45°. The change of energy includes that of the energy required to drivethe main flow through the Channel and the work done by shear stress and disturbed pressure onthe wall. Because of positive average longitudinal velocity (uω) the net energy reduction can beachieved when the mass transfer angle is larger than 8°.
出处 《力学学报》 EI CSCD 北大核心 2002年第3期439-444,共6页 Chinese Journal of Theoretical and Applied Mechanics
关键词 壁面传质扰动 纵向速度 渠道流动 抽吸-引射 传质倾角 层流 channel flow, suction-injection, drag, energy, numerical analysis
  • 相关文献

参考文献6

  • 1Swean TF,Inger GR.Vectored Injection and Suction in Laminar Boundary Layers with Heat Transfer.AIAA 74-676,1974
  • 2Kuhn GD,et al.Turbulent flow in a channel with a wall with progressive waves.In: Proceedings of SME Symposium on Laminar-Turbulent Boundary Control,Modification and Marine Application,New Orleans,1984.63~65
  • 3徐书轩,王鹏举.具有定向周期性抽吸-引射的渠道流动[J].中国科学技术大学学报,1998,28(5):533-538. 被引量:1
  • 4Xu SX.Disturbance and drag in turbulent channel flow over a wall with progressive waves.Transactions of the Japan Society for Aeronautical and Space Sciences,1994,36(114): 218~222
  • 5Halim A,Hafez M.Calculation of separated bubbles using boundary-layer-type equations Part II.AIAA 84-1585,1984
  • 6Napolitano M.High Re separated flow solution using the Navier-Stokes and approximate equations.AD A152-252,1985.2~10

二级参考文献3

  • 1徐书轩,中国科学技术大学学报,1996年,26卷,99期,121页
  • 2Wang G,Int J Heat Mass Transf,1995年,38卷,17期,3219页
  • 3徐书轩,Transaction of the Japan Society for Aeronautical and Space Sciences,1994年,36卷,114期,218页

同被引文献12

  • 1Gadelhak M, Bushnell D M. Status and outlook of flow separation control[R]. AIAA Paper, 1991: 91- 137.
  • 2Berdyugin A E, Fomin V M, Fomichev V P. Body drag control in supersonic gas flows by injection of liquid jets[J]. Journal of Applied Mechanics and Technical Physics, 1995,36 (5) : 675-681.
  • 3Quadrio M, Floryan J M, Luchini P. Effect of stre- amwise-periodie wall transpiration on turbulent fric- tion drag[J]. Journal of Fluid Mechanics, 2007, 576 : 425-444.
  • 4Ponnaiah S. Boundary layer flow over a yawed cylin- der with variable viscosity: Role of non-uniform double slot suction (injection)[J]. Int J Numer Method H, 2012, 22(3):342-356.
  • 5Sun R, Szwalek J, Sirviente A I. The effects of poly- mer solution preparation and injection on drag reduc- tion[J~. Journal of Fluids Engineering, Transactions of the ASME, 2005, 127(3): 536-549.
  • 6Kafoussias N, Xenos M. Numerical investigation of two dimensional turbulent boundary-layer compressi- ble flow with adverse pressure gradient and heat and mass transfer[J]. ActaMech, 2000, 41~201-223.
  • 7Akcay M, Yukselen M A. Flow of power-law fluids over a moving wedge surface with wall mass injection [J]. Archive of Applied Mechanics, 2011, 81(1) :65- 76.
  • 8Vimalat C S, Nath G. Three dimensional laminar compressible boundary layers with large injection FJ]. JFluidMech, 1975, 71(4);711-727.
  • 9Wilcox D C. Reassessment of the scale determining equation for advanced turbulence models[J] . AIAA Journal, 1988, 26(11) :1299-1310.
  • 10Wilcox D C. Simulation of transition with a two equa- tions turbulence model[J~. AIAA Journal, 1994, 32 (2) : 247-255.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部