期刊文献+

拱结构空间几何非线性分析的曲梁单元 被引量:2

3D curved-beam element for geometrically nonlinear analysis of arch structure
下载PDF
导出
摘要 利用势能原理和插值函数推导了一种拱结构空间几何非线性分析的曲梁单元。采用固定Lagrange坐标系和Newton Raphson求解法。使用本文的方法与其他方法相比 ,该方法将轴向应变的非线性部分取平均值 ,提高了结果的精确性 ,而且单元数量大大减少。 A nonlinear curved-beam finite element is developed for three-dimensional space systems by using the principle of potential energy and polynomial functions.The method of solution used is that of the fixed lagrange coordinates and Newton-Raphson procedure.Compar sons of the method with those of various other methods indicate that,A major improvement in the accuracy of the element is obtained by averaging the nonlinear part of the axial strain,in terms of the number of element,the method seems significantly more effective than other
出处 《四川建筑科学研究》 2002年第2期10-11,14,共3页 Sichuan Building Science
关键词 拱结构 空间 几何非线性 曲梁单元 arch geometrically nonlinear curved-beam
  • 相关文献

参考文献6

  • 1[1]Austin W J,Ross T J.Elastic bucking of arches under symmet ical loading[J].Struct.ASCE,1976,102(5):1085-1095.
  • 2[2]Bathe K,Bolourchi S.Large displacement analysis of three din ensional beam structure,Int[J].For Numer.Method in Engng.,1979,14(7):961-986.
  • 3[3]Sawko F.Analysis of grillages curved in plane,Proc.IASCE8[J].1993,(8):151-170.
  • 4[4]Noor A K,Green W H,Hartley S J.Nonlinear finite element analysis of curved beam.,Comput Methods Appl.Mech.Engng[J].1997,12(3):289-308.
  • 5[5]Calhoun P R,DaDeppo D A.Nonlinear finite element analysis of clamped arches[J].Struct.ASCE,1976,109(3):599-612.
  • 6[6]DaDeppo D A,Schmidt R.Large deflections and stability of hingeless circular arches under interacting loads[J].Appl.Mech.,Trans.ASME,1974,41(4):989-994.

同被引文献46

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部