期刊文献+

基于先验知识的前馈网络对原油实沸点蒸馏曲线的仿真 被引量:12

Feedforward Networks Based on Prior Knowledge and its Application in Modeling the True Boiling Point Curve of the Crude Oil
下载PDF
导出
摘要 将先验知识与神经元网络相结合,可以提高模型的拟合精度和预测能力。本文将针对三层前馈网与单调性先验知识相结合的问题,分析Joerding的惩罚函数法,提出两种新方法:插值点法和有约束优化方法,并成功地应用于原油实沸点蒸馏曲线的仿真,使网络模型在整体和局部上都更贴近于实际对象。 FFN has been widely applied in modeling chemical processes because of its universal approximability. The inclusion of prior knowledge is a means of improving the fit precision and the prediction ability of the modal when trained on sparse and noisy data. As to the three-layer feedforward networks and the prior knowledge of monotonicity constraint, the Joerding's penalty function method is analyzed first. Then two novel methods: interpolation method and constrained optimization method, are proposed. These methods have been applied to modeling the true boiling point curve of the crude oil successfully. The simulation experimental results show that the network models trained by those methods are more close to the actual object in local and whole.
机构地区 浙江大学化工系
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2001年第4期351-356,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金资助项目(编号:20076041).
关键词 仿真 先验知识 前馈网络 插值点法 有约束优化方法 原油 实沸点 蒸馏曲线 神经网络 Constraint theory Feedforward neural networks Interpolation Petroleum refining
  • 相关文献

参考文献3

  • 1《运筹学》教材编写组,运筹学.,1999年
  • 2Hagan M T,IEEE Trans Neural Networks,1994年,5卷,6期,989页
  • 3胡上序,华东石油学院学报,1983年,1期,1页

同被引文献148

引证文献12

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部