期刊文献+

硬壁狭缝中流体密度分布的密度泛函理论 被引量:2

Density Functional Theory for Density Profile of Fluid Confined in Slit
下载PDF
导出
摘要 采用密度泛函展开理论对位于两硬壁之间的硬球流体及 Lennard- Jones( L- J)流体密度分布进行了研究 ,并与计算机模拟结果进行了比较。对于硬球流体 ,理论值与模拟值相吻合 ,只有密度较高时在壁面附近略有差别 ;而对于 L- J流体 ,当 T* 很高时 ,理论计算和模拟的吻合程度接近于硬球流体 ,而当 T*偏低时 。 Density expansion method of density functional theory was applied to the study of the hard sphere fluid and the L J fluid confined between two parallel planar walls. The density profiles obtained are compared with the results of Monte Carlo simulation of canonical ensemble. The agreement is good for the hard sphere fluid except which nearby the wall at the high density. For the L J fluid, the agreement is as good as it for the hard sphere at higher T * and is poor at lower T *.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第3期274-277,共4页 Journal of East China University of Science and Technology
基金 国家自然科学基金 ( 2 973 6 1 70 2 0 0 2 5 6 1 8) 教育部博士点专项科研基金 ( 1 9990 2 5 1 0 3 ) 上海市教委曙光计划资助课题
关键词 硬壁狭缝 流体密度分布 密度泛函理论 非均匀流体 MONTECARLO模拟 相平衡 density functional non uniform fluid density distribution Monte Carlo simulation
  • 相关文献

参考文献8

  • 1[1]Evans R. Density functionals in the theory of nonuniform fluids[A]. Henderson D. Fundamentals of Inhomogeneous Fluids[C]. New York: Marcel Dekker, 1992. 85-175.
  • 2[2]Stell G. Cluster expansions for classical systems in equilibrium[A]. Frisch H L, Lebowitz J L.The Equilibrium Theory of Classical Fluids[C].New York: Benjamin,1964. Ⅱ171-Ⅱ266.
  • 3[3]Powles J G, Rickayzen G, Williams M L. The density profile of a fluid confined to a slit[J]. Mol Phys, 1988,64:33-41.
  • 4[4]Curtin W A, Ashcroft N W. Weighted-density-functional theory of inhomogeneous liquids and the freezing transition[J]. Phys Rev, 1985, A32:2 909-2 919.
  • 5[5]Choudhury N, Ghosh S K. Density functional theory of adhesive hard sphere fluids[J]. J Chem Phys, 1997, 106:1 576-1 584.
  • 6[6]Mermin N D. Thermal properties of the inhomogeneous elector gas[J]. Phys Rev, 1965, 137:1 441-1 443.
  • 7[7]Thiele E. Equation of state for hard spheres[J]. J Chem Phys, 1963,39:474-479.
  • 8[8]Ebner C, Saam W F, Stroud D. Density-functional theory of simple classical fluids: Ⅰ. Surfaces[J]. Phys Rev A,1976, 14:2 264-2 273.

同被引文献9

  • 1CURTIN W A, A SHCROGT N W. Weighted-density-functional theory of inhomogeneous liquids and the frezzing transition[J]. Phys Rev, 1985, A32:2 909-2 919.
  • 2YU Yang-xin, WU Jian-zhong. Structure of hard-sphere fluids from a modified fundamental-measure theory[J]. J Chem Phys, 2002,117(22):10 156-10 164.
  • 3ROSENFELD Y, SCHMIDT M, LOWEN H, et al. Fundamental-measure free-energy density functional for hard spheres: dimensional crossover and freezing[J]. Phys Rev E, 1997,55(4):4 245-4 263.
  • 4POWLES J G, RICKAYZEN G, WILLIANS M L. The density profile if a fluid congined to a slit[J]. Mol Phys, 1988,64:33-41.
  • 5WALTON J P R B, QUIRKE N. Modeling the phase behavior of a fluid within a pore[J]. Chem Phys Lett, 1986,129(4):382-386.
  • 6周健,陆小华,王延儒,时钧.Lennard-Jones流体固液相变的分子动力学模拟[J].南京化工大学学报,1997,19(2):20-25. 被引量:5
  • 7张现仁,汪文川.甲烷在单壁碳纳米管中的吸附的密度泛函研究[J].化工学报,2001,52(3):193-194. 被引量:3
  • 8顾冲,高光华,于养信,毛宗强.单壁碳纳米管吸附氢气的计算机模拟[J].高等学校化学学报,2001,22(6):958-961. 被引量:18
  • 9诸蔚朝,李卫华,马红孺.约束条件下的硬球流体[J].Chinese Journal of Chemical Physics,2002,15(4):295-299. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部