摘要
通过引入一个仅仅与介质弹性常数有关的矩阵M ,将Christoffel系数矩阵分解成M和一个与波传播方向有关的矢量 P两个部分的乘积 .由此推导出适用于计算各种各向异性固体弹性介质弹性波群速度的普适解析表达式 .群速度作为弹性波波矢的函数 .在特殊对称性方向上该解析表达式的结果与已有文献的结果一致 .利用Matlab软件数值求解Chritoffel方程 ,得到对应于任意方向上的相速度 .图 2 ,参 7.
The Christoffel matrix was decomposed to two parts,which are a matrix M and a vector .M is solely a function of elastic constants,and is of the wave propagation direction. Based on this,the general analytical formula to calculate the group velocities of elastic waves in an elastic medium was deduced. The group velocities are functions of the wave vector of elastic waves. The results deduced from the general formula in the special symmetrical directions are identical with the one of the publications. The Christoffel equation could be solved by means of MATLAB software to find all the phase velocities in any wave direction.2tabs.,7refs.
出处
《湘潭矿业学院学报》
2002年第2期92-94,共3页
Journal of Xiangtan Mining Institute
基金
国家自然科学基金资助 (编号 1 98740 70 )
关键词
各向异性弹性介质
相速度
群速度
anisotropic elastic media
group velocity
phase velocity