期刊文献+

粘弹性效应对高分子混合物相分离动力学的影响 被引量:3

Studies of Viscoelastic Effects on the Phase Separation Dynamics of Polymer Mixtures
下载PDF
导出
摘要 采用双流模型考察了粘弹性效应对二元高分子复杂流体相分离动力学的影响 .发现高分子混合物的两组分粘弹性相同时 ,相分离形态与简单二元流体类似 ,即非临界组成时少数相呈分散相 ,临界组成时呈双连续相 ,散射函数呈单峰 ;但相区域增长指数比简单二元流体混合物的增长指数小得多 .另一方面 ,对于高分子混合物的两组分存在粘弹性反差的情况 ,非临界组成时出现相反转 ,并导致相区域的增长指数变大 ,临界组成时出现一种持久的海绵状结构 ,相区域增长指数反而下降 .同时由于网络结构的出现导致散射函数出现双峰和肩形峰 ,表明有两种特征尺寸 ,此时用全程圆平均的散射函数来求增长指数将失去意义 。 Two fluid model has been used for investigating viscoelastic effects on phase separtion dynamics of polymer mixtures.It is found that the simulation results of symmetric viscoelasticity model resemble the results of fluid model.The minority phase of blends forms the dispersed phase in off critical component,while bicontinuous phase is formed in critical component.At the same time,the scattering function has only one peak in comparison with the two peaks in the case of viscoelasticity contrast.The growth exponent of domains in polymer mixtures with viscoelastic effects is less than in simple fluids mixtures because viscoelastic effects restrain the concentration fluctuation and domains coarsening.On the other hand,in the two fluid model simulations with viscoelasticity contrast,the unusual phase inversion is formed in off critical component,while longtime sponge structure is formed in critical component.It is found that phase inversion results in the acceleration of domains coarsening.When network is formed,the two peaks of scattering function also suggest that two characteristic sizes exit.So obtaining growth exponent by circle average of scattering function becomes unreasonable in this case,which makes it necessary to treat two peaks separately or use the contour length method.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2002年第3期301-308,共8页 Journal of Fudan University:Natural Science
基金 "973"国家重点基础研究专项经费资助项目 (G19990 6 4 80 0 )
关键词 粘弹性效应 高分子混合物 相分离动力学 粘弹性分差 动力学不对称 双流模型 相分离形态 phase separation viscoelasticity contrast dynamical asymmetry two fluid model
  • 相关文献

参考文献13

  • 1[1]Aubert J H.Structural coarsenin g of demixed polymer solu tions[J].Macromolecules,1990,23:1446 -1452.
  • 2[2]Kuwahara N,Kubota K.Spinodal decomposition in a polymer solution [J].Phys Rey A,1992,45(10):7385-7394.
  • 3[3]Tanaka H.Unusual phase separation in a polymer solution caused b y asymmetric molecular dynamics[J].Phys Rev Lett,1993,71(19):3 158-3161.
  • 4[4]Tanaka H.Universality of viscoelastic phase separation in dynami cally asymmetric fluid mixtures[J].Phys Rev Lett,1996,76(5):7 8 7-790.
  • 5[5]Doi M,Onuki A.Dynamic coupling between stress and composition in polymer solutions and blends[J].J Phys Ⅱ France,1992,2:1 631-1656.
  • 6[6]Tanaka H,Araki T.Phase inversion during viscoelastic phase separ ation:Roles of bulk and shear relaxation moduli[J].Phys Rev Lett,1997,78(26):4966-4969.
  • 7[7]Ahluwalia R.Phase separation in a simple model with dynamical as ymmetry[J].Phys Rev E,1999,59( 1):263-268.
  • 8[8]Tanaka H.Viscoelastic phase separation[J].J Phys:Condens Mat ter,2000,12:R207-R264.
  • 9[9]Araki T,Tanaka H.Three-dimensional numerical simulations of vis coelastic phase separation:morphological characteristics[J].Macromolecules,2001,34:1953-1963.
  • 10[10]Cao Y,Zhang H D,Xiong Z,et al.Viscoelastic effects on the dynamics of spinodal decomposition in binary polymer mixtures[J].Macromol Theory Sim u l,2001,10:314-324.

同被引文献74

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部