摘要
采用变分法和微扰法相结合的方法 ,把高强度磁场中氢原子的哈密顿H分为三部分 :球对称哈密顿 ;z分量角动量算符相应部分和非球对称势微扰 ,并用一种特别规定的分解法将哈密顿H中含磁场平方项的势能分解为球对称与非球对称两部分 ,且使非球对称部分引起的一级修正能量值为零 ,并采用一种简便的变分法直接求出B2 对能级的二级修正值 .这一方法不仅计算简单 ,而且提高了计算结果的精度 .计算了在均匀高强度静磁场下氢原子的 11个低能态能级和平均半径 ,讨论了高强度磁场对能级和半径的影响 .
In this paper we separate the Hamiltonian into three parts: a spherical symmetry Hamiltonian; a z-component of the angular momentum operator, and a non-spherical symmetric potential as the perturbation operator, and provide a propose method by separating the potential containing squared magnetic field B 2 into two parts: spherical symmetric and non-spherical symmetric ones so that the first-order energy correction due to the non-spherical symmetric potential is zero, and the second-order correction due to B 2 can be obtained by a simple variational method. Our calculations are very simple but the results are more accurate. The eleven low-lying energy levels of a hydrogen atom and its mean radius in a uniformly strong magnetic field B are calculated. The influence of a strong magnetic field on the levels and radius of the hydrogen atom is discussed.
出处
《原子核物理评论》
CAS
CSCD
北大核心
2002年第2期245-249,共5页
Nuclear Physics Review
基金
重庆市教育委员会资助项目 ( 2 0 0 110 75 )
重庆市科委应用基础理论研究基金资助项目~~
关键词
氢原子
性态
高强度均匀静磁场
变分法
微扰强度
a uniformly strong magnetic field
variational method
perturbation strength