期刊文献+

基于有限域GF(2^n)上椭圆曲线的组数字签名算法 被引量:5

Group Digital Signature Scheme Based on the Elliptic Curve over Finite Field GF(2n)
下载PDF
导出
摘要 组数字签名是一个相对较新的概念 ,它有着广泛的应用 .而基于椭圆曲线密码体制的数字签名比其它签名具有更高的安全性和有效性 .将组数字签名与椭圆曲线密码体制相结合 ,提出了一个基于有限域GF(2 n)上椭圆曲线的组数字签名方案 ,其安全性建立在有限域GF(2 n)上椭圆曲线密码体制之上 . The group digital signature which is widely applied in the practice is a relatively new concept. Compared with other methods, the digital signature scheme based on the elliptic curve cryptosystem is more secure and more effective. A group digital signature scheme based on the disperse logarithm of the elliptic curve over the finite fields GF(2 n) is proposed in this paper. The security of the scheme is established on the elliptic curve cryptosystem over the finite field GF(2 n) .
作者 周立章
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2002年第4期416-418,共3页 Journal of Sichuan Normal University(Natural Science)
关键词 组签名 椭圆曲线 离散对数 Group signature Elliptic curve Disperse logarithm
  • 相关文献

参考文献6

二级参考文献7

  • 1Lee W E,IEE Proc Comput Digit Tech,1998年,145卷,1期,15页
  • 2Chen L,Pre proceedings of Eurocrypt′95,1995年,39页
  • 3Chen L,Pre proceedings of Eurocrypt′94,1994年,163页
  • 4王育民,通信网的安全.理论与技术,1999年
  • 5Chen L,Lecture Notes in Computer Science 921.Advances in Cryptology EUROCRYPT'95,1995年,921卷,39页
  • 6Chen L,Lecture Notes in Computer Science.950.Proc EUROCRYPT'94,1995年,950卷,171页
  • 7C. P. Schnorr. Efficient signature generation by smart cards[J] 1991,Journal of Cryptology(3):161~174

共引文献90

同被引文献42

  • 1郭现峰,袁丁.基于RSA防欺诈秘密共享体制的安全性分析和改进[J].四川师范大学学报(自然科学版),2004,27(5):541-543. 被引量:5
  • 2柯召 孙琦.数论讲义[M].北京:高等教育出版社,1986.226-227.
  • 3Lidl R, Niederreiter H. Finite Fields[M]. MA:Addison Wesley,1983.
  • 4廖群英 孙琦.关于有限域上原根的分布,北京邮电大学学报[M].,2004,27(4).28-30.
  • 5Schoof R. Counting points on elliptic curves over finite fields[J]. Journal de Theorie des Nombers de Bordeaux,1995,7:219~254.
  • 6Fitzgerald R W. A characterization of primitive polynomials over finite fields[J]. Finite Fields and Their Applications,2003,9:117~121.
  • 7Zhang Z X. Finding finite B2 -sequences with large m-a (1)/(2) m [J]. Mathematics of Computation,1994,63:403~414.
  • 8Blakley G R. Safeguarding cryptographic keys[J]. National Computer Conference,1979,48:313-317.
  • 9Shamir A. How to share a secret[J]. Communications of the ACM,1979,22(11):612-613.
  • 10McEliece R J, Sarwate D V. On sharing secrets and Reed-Solomon codes[J]. Communications of the ACM,1981,24(8):583-584.

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部