期刊文献+

广义拟牛顿算法对一般目标函数的收敛性 被引量:7

Global Convergence of the Generalized Quasi-Newton Algorithm for General Objective Functions
下载PDF
导出
摘要 本文证明了求解无约束最优化的广义拟牛顿算法在Goldstein非精确线搜索下对一般目标函数的全局收敛性 ,并在一定条件下证明了算法的局部超线性收敛性 . In this paper,we develop the Generalized Quasi Newton methods for unconstrained optimization which was formed in paper,and we use inexact line searches (Goldstein rule).These methods are globally convergent when applied to a general objective function under the weak condition,and are locally super linearly convergent when applied to a uniformly convex function whoes Hessian matrix G(x) is Lipschitz continuous in the neighborhood of the optimal solution point.So we develop the results of paper and .
出处 《应用数学》 CSCD 北大核心 2002年第3期69-75,共7页 Mathematica Applicata
基金 北京市教委科研基金资助项目 (99KJ10 )
关键词 无约束最优化 广义拟牛顿算法 Goldstein非精确线搜索 全局收敛 局部超线性收敛性 Unconstrained optimization Generalized Quasi Newton method Goldetein rule Global and superlinearly convergence
  • 相关文献

同被引文献24

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部