摘要
本文利用重合度理论研究一类二阶具偏差变元的微分方程x''(t)+f(t,x(t),x(t-τ0(t)))x'(t)+β(t)g(x(t-τ1(t)))=p(t)的周期解问题,得到了存在周期解的新的结果.
Using the theroy of coincidence degree,the authors studied a kind of periodic solutions of the second order differential equation with deviating arguments x'(t) + f(t,x(t), x(t - τ0(t)))x'(t) +β(t)g(x(t -τ1(t))) = p(t), some new results for existence of the periodic solution are obtained.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第4期811-818,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(19871005)
高校博士点专项基金资助项目
关键词
偏差变元
周期解
重合度理论
Deviating argument
Periodic solution
Theory of coincidence degree