摘要
论文针对描述血吸虫病传播的数学模型提出一个非协调有限元格式,通过借助单元插值算子的一些特性和非协调误差估计技巧,在不采用投影算子的情况下,得到了L^2模的最优误差估计和H^1模的超逼近结果,并通过构造插值后处理算子得到了超收敛结果.
In the paper,a nonconforming finite element scheme was considered for schistosomiasis mathematical model.By using of some special properties of the finite element interpolation and some techniques of error estimates,the optimal error estimates in L^2-norm and some superclose results in H^1-broken norm were derived without the projection operator.At the same time,based on the interpolated postprocessing trick,the global superconvergence result in H^1-broken norm was obtained.
作者
许超
周家全
唐启立
XU Chao;ZHOU Jiaquan;TANG Qili(Faculty of Mathematics and Physics Education,Luoyang Institute of Science and Technology,Luoyang 471023,China;School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2019年第2期33-38,共6页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金青年科学基金资助项目(11401174)
河南省教育厅自然科学研究计划项目(14B110025)
洛阳理工学院自然科学研究项目(2011YZ1106)
关键词
血吸虫病数学模型
非协调元
最优误差估计
超逼近和超收敛
schistosomiasis mathematical model
nonconforming element
optimal error estimates
superclose and superconvergence