期刊文献+

大数据时代下的卫生数据价值判断标准探讨 被引量:1

A Discussion on the Standard of the Value Judgment of the Medical Data in the Age of “Big Data”
下载PDF
导出
摘要 "大数据"带来的不仅仅是一种全新的巨大体量的数据资产,更是一种对如何处理海量数据的思维方式、分析方法的探索;将大数据的思维方式和分析方法引入卫生数据,以期获得的也不仅仅是一份包罗万象的表格、数据,更是如何通过数据加工实现"数据增值"。然而,对于大数据下的卫生数据价值判定,目前还没有一个明确的标准。价值有无和价值大小仍在用个人主观方法判断,结果因人而异。因此,论文在阅读相关文献和资料的基础上,根据卫生数据的特性,结合自身对大数据的理解,阐述了大数据4V特点的见解,提出了通过"CIE指数"判断卫生数据价值大小的观点,进一步明确了设立价值判断标准的重要性,并为未来卫生数据如何规范、统一地进入"大数据"时代做出了设想。 What the 'Big data' brings is not only a kind of new data assets of huge volume, but a exploration of the mode of thinking and the method of analysis on how to deal with the huge amounts of data. Introducing the mode of thinking and the method of analysis to the medical data, what we obtains is not only a comprehensive form or data table, but a way of value-added data by processing the data. But now, there is no a specific standard to determine the medical data value of the big data. The value of worthiness or unworthiness and hugeness or exiguity stil judge by the personal subjective method, and the result varies from person to person. According to the characteristics of the medical data, combining with own understanding of the big data, and on the basis of reading related literature and materials, this paper elaborates the personal opinion of '4V Traits' of the big data, puts forward the personal view of judging the medical data value through the 'CIE Index', defines the significance of setting up a standard of value judgment, and makes a personal vision of the medical data value regularly enters into the age of 'Big data' in the future.
出处 《信息安全与技术》 2015年第12期27-30,共4页
关键词 大数据 卫生数据 数据增值 价值判断标准 big data medical data value-added data the standard of value judgment
  • 相关文献

参考文献11

二级参考文献32

  • 1曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 2王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 3RABL T, SADOGHI M, JACOBSEN H A. Solving big data challenges for enterprise application performance manage- ment [ J ]. Proceedings of the VLDB Endowment, 2012,5 (12) : 1724 - 1735.
  • 4MCAFEE A, BRYNJOLFSSON E. Big data:the management revolution [ J ]. Harvard Business Review, 2012,90 ( 10 ) : 60 -68.
  • 5BRYANT R E. Data - intensive supercomputing: the case for DISC[ R]. Technical Report, CMU - CS - 07 - 128,.
  • 6Carne- gie Mellon University,2007. LOHR S. The age of big data [ N ]. The New York Times, 2012 -02 - 11.
  • 7GANTZ J, REINSEL D. Extracting Value from Chaos [ R ]. Framingham : International Data Corporation,2011.
  • 8MANYIKA J, CHUI M, BROWN B, et al. Big data: the next frontier for innovation, competition, and productivity [ R ]. McKinsey Global Institute,2011.
  • 9CHEN H, CHIANG R H L, STOREY V C. Business intelli- gence and analytics: from big data to big impact [ J ]. MIS Quarterly,2012,36(4) : 1165 - 1188.
  • 10MADNICK S E, WANG R Y, LEE Y W, et al. Overview and framework for data and information quality research [ J ]. ACM journal of Data and Information Quality,2009,1 (1) :1 -22.

共引文献644

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部